Задано уравнение плоской волны. Савельев И.В. Курс общей физики, том I. Понятие о волнах

Для большинства задач, связанных с волнами, важно знать состояние колебаний различных точек среды в тот или иной момент времени. Состояния точек среды будут определены, если известны амплитуды и фазы их колебаний. Для поперечных волн необходимо еше знать характер поляризации. Для плоской линейно-поляризованной волны достаточно иметь выражение, позволяющее определить смещение с(х, t) из положения равновесия любой точки среды с координатой х, в любой момент времени t. Такое выражение называется уравнением волны.

Рис. 2.21.

Рассмотрим так называемую бегущую волну, т.е. волну с плоским волновым фронтом, распространяющуюся в каком-либо одном определенном направлении (например, вдоль оси х). Пусть частицы среды, непосредственно примыкающие к источнику плоских волн, совершают колебания по гармоническому закону; %(0, /) = = ЛсобсоГ (рис. 2.21). На рисунке 2.21, а через ^(0, t) обозначено смещение частиц среды, лежащих в перпендикулярной рисунку плоскости и имеющих в выбранной системе координат координату х = 0 в момент времени t. Начало отсчета времени выбрано так, чтобы начальная фаза колебаний, определенных через косинусоидальную функцию, была равна нулю. Ось х совместим с лучом, т.е. с направлением распространения колебаний. В этом случае фронт волны перпендикулярен оси х, так что частицы, лежащие в этой плоскости, будут совершать колебания в одной фазе. Сам фронт волны в данной среде перемещается вдоль оси х со скоростью и распространения волны в данной среде.

Найдем выражение?(х, t) смещения частиц среды, удаленных от источника на расстояние х. Это расстояние фронт волны проходит

за время Следовательно, колебания частиц, лежащих в плоскости, удаленной от источника на расстояние х, будут отставать по времени на величину т от колебаний частиц, непосредственно примыкающих к источнику. Эти частицы (с координатой х) также будут совершать гармонические колебания. В отсутствие затухания амплитуда А колебаний (в случае плоской волны) не будет зависеть от координаты х, т.е.

Это и есть искомое уравнение тоской бегущей волны (не путать с волновым уравнением, рассматриваемым ниже!). Уравнение, как уже отмечалось, позволяет определить смещение % частицы среды с координатой х в момент времени t. Фаза колебаний зависит

от двух переменных: от координаты х частицы и времени t. В данный фиксированный момент времени фазы колебаний различных частиц будут, вообще говоря, различны, но можно выделить такие частицы, колебания которых будут происходить в одинаковой фазе (синфазно). Можно также считать, что разность фаз колебаний этих частиц равна 2пт (где т = 1, 2, 3,...). Кратчайшее расстояние между двумя частицами бегущей волны, колеблющимися в одинаковой фазе, называется длиной волны X.

Найдем связь длины волны X с другими величинами, характеризующими распространение колебаний в среде. В соответствии с введенным определением длины волны можно написать

или после сокращений Так как , то

Это выражение позволяет дать иное определение длины волны: длина волны есть расстояние, на которое успевают распространиться колебания частиц среды за время, равное периоду колебаний.

Уравнение волны обнаруживает двойную периодичность: по координате и по времени: ^(х, t) = Z,(x + nk, t) = l,(x, t + mT) = Цх + пХ, ml), где пит - любые целые числа. Можно, например, фиксировать координаты частиц (положить х = const) и рассматривать смещение их как функцию времени. Или, наоборот, фиксировать момент времени (принять t = const) и рассматривать смещение частиц как функцию координат (мгновенное состояние смещений - мгновенная фотография волны). Так, находясь на пристани можно с помощью фотоаппарата в момент времени t сфотографировать морскую поверхность, но можно, бросив щепку в море (т.е. зафиксировав координату х), следить за ее колебаниями во времени. Оба эти случая приведены в виде графиков на рис. 2.21, а-в.

Уравнение волны (2.125) можно переписать иначе

Отношение обозначается к и называется волновым числом

Так как , то

Волновое число, таким образом, показывает, какое число длин волн укладывается в отрезке 2л единиц длины. Введя волновое число в уравнение волны, получим уравнение бегущей в положительном направлении Ох волны в наиболее часто употребляемом виде

Найдем выражение, связывающее разность фаз Дер колебаний двух частиц, принадлежащих разным волновым поверхностям Х и х 2 . Воспользовавшись уравнением волны (2.131), запишем:

Если обозначить или согласно (2.130)

Плоская бегущая волна, распространяющаяся в произвольном направлении, описывается в общем случае уравнением

где г -радиус-вектор, проведенный из начала координат к частице, лежащей на волновой поверхности; к - волновой вектор, равный по модулю волновому числу (2.130) и совпадающий по направлению с нормалью к волновой поверхности в направлении распространении волны.

Возможна также комплексная форма записи уравнения волны. Так, например, в случае плоской волны, распространяющейся вдоль оси х

а в общем случае плоской волны произвольного направления

Уравнение волны в любой из перечисленных форм записи может быть получено как решение дифференциального уравнения, называемого волновым уравнением. Если мы знаем решение этого уравнения в форме (2.128) или (2.135) - уравнение бегущей волны, то найти само волновое уравнение не составляет труда. Продифференцируем 4(х, t) = % из (2.135) дважды по координате и дважды времени и получим

выражая?, через полученные производные и сравнивая результаты, получим

Имея в виду соотношение (2.129), запишем

Это и есть волновое уравнение для одномерного случая.

В общем виде для?, = с(х, у, z, /) волновое уравнение в декартовых координатах выглядит так

или в более компактном виде:

где Д - дифференциальный оператор Лапласа

Фазовой скоростью называется скорость распространения точек волны, колеблющихся в одинаковой фазе. Иными словами - это скорость перемещения «гребня», «впадины», либо любой другой точки волны, фаза которой фиксирована. Как уже отмечалось ранее, фронт волны (а следовательно, и любая волновая поверхность) перемещается вдоль оси Ох со скоростью и. Следовательно, скорость распространения колебаний в среде совпадает со скоростью перемещения данной фазы колебаний. Поэтому скорость и, определяемую соотношением (2.129), т.е.

принято называть фазовой скоростью.

Тот же результат можно получить, найдя скорость точек среды, удовлетворяющих условию постоянства фазы со/ - fee = const. Отсюда находится зависимость координаты от времени(со/ - const) и скорость перемещения данной фазы

что совпадает с (2.142).

Плоская бегущая волна, распространяющаяся в отрицательном направлении оси Ох, описывается уравнением

Действительно, в этом случае фазовая скорость отрицательна

Фазовая скорость в данной среде может зависеть от частоты колебаний источника. Зависимость фазовой скорости от частоты называется дисперсией, а среды, в которых имеет место эта зависимость, называются диспергирующими средами. Не следует думать, однако, что выражение (2.142) и есть указанная зависимость. Дело в том, что в отсутствие дисперсии волновое число к прямо пропорционально

со и поэтому . Дисперсия имеет место лишь в том случае, когда со зависит от к нелинейно).

Бегущая плоская волна называется монохроматической (имеющей одну частоту), если колебания в источнике гармонические. Монохроматическим волнам отвечает уравнение вида (2.131).

Для монохроматической волны угловая частота со и амплитуда А не зависят от времени. Это значит, что монохроматическая волна безгранична в пространстве и бесконечна во времени, т.е. представляет собой идеализированную модель. Всякая реальная волна, как бы тщательно ни поддерживалось постоянство частоты и амплитуды, монохроматической не является. Реальная волна не длится бесконечно долго, а начинается и кончается в определенные моменты времени в определенном месте, и, следовательно, амплитуда такой волны есть функция времени и координаты этого места. Однако чем длиннее интервал времени, в течение которого поддерживаются постоянными амплитуда и частота колебаний, тем ближе к монохроматической данная волна. Часто в практике монохроматической волной называют достаточно большой отрезок волны, в пределах которого частота и амплитуда не изменяются, подобно тому, как изображают на рисунке отрезок синусоиды, и называют его синусоидой.

Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат х, у, z и времени t:

(имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической как относительно времени t, так и относительно координат х, у, z. Периодичность по времени вытекает из того, что описывает колебания частицы с координатами х, у, z. Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстояние К, колеблются одинаковым образом.

Найдем вид функции в случае плоской волны, предполагая, что колебания иосят гармонический характер. Для упрощения направим оси координат так, чтобы ось совпала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси и, поскольку все точки волновой поверхности колеблются одинаково, смещение будет зависеть только от Пусть колебания точек, лежащих в плоскости (рис. 94.1), имеют вид

Найдем вид колебания точек в плоскости, соответствующей произвольному значению х. Для того чтобы пройти путь от плоскости х= 0 до этой плоскости, волне требуется время - скорость распространения волны).

Следовательно, колебания частиц, лежащих в плоскости х, будут отставать по времени на от колебаний частиц в плоскости т. е. будут иметь вид

Итак, уравнение плоской волны (и продольной, и поперечной), распространяющейся в направлении оси х, выглядит следующим образом:

Величина а представляет собой амплитуду волны. Начальная фаза волны а определяется выбором начал отсчета При рассмотрении одной волны начала отсчета времени и координаты обычно выбираются так, чтобы а была равной нулю. При совместном рассмотрении нескольких волн сделать так, чтобы для всех них начальные фазы равнялись нулю, как правило, не удается.

Зафиксируем какое-либо значение фазы, стоящей в уравнении (94.2), положив

(94.3)

Это выражение определяет связь между временем t и тем местом х, в котором фаза имеет зафиксированное значение. Вытекающеё из него значение дает скорость, с которой перемещается данное значение фазы. Продифференцировав выражение (94.3), получим

Таким образом, скорость распространения волны v в уравнении (94.2) есть скорость перемещения фазы, в связи с чем ее называют фазовой скоростью.

Согласно (94.4) . Следовательно, уравнение (94.2) описывает волну, распространяющуюся в сторону возрастания х. Волна, распространяющаяся в противоположном направлении, описывается уравнением

Действительно, приравняв константе фазу волны (94.5) и продифференцировав получившееся равенство, придем к соотношению

из которого следует, что волна (94.5) распространяется в сторону убывания х.

Уравнению плоской волны можно придать симметричный относительно х и t вид. Для этого введем величину

которая называется волновым числом. Умиожив числитель и знаменатель выражения (94.6) на частоту v, можно представить волновое число в виде

(см. формулу (93.2)). Раскрыв в (94.2) круглые скобки и приняв во внимание (94.7), придем к следующему уравнению плоской волны, распространяющейся вдоль оси х:

Уравнение волны, распространяющейся в сторону убывания х, отличается от (94.8) только знаком при члене

При выводе формулы (94.8) мы предполагали, что амплитуда колебаний не зависит от х. Для плоской волны это наблюдается в том случае, когда энергия волиы не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны С удалением от источника колебаний постепенно уменьшается - наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону: с убыванием во времени амплитуды затухающих колебаний; см. формулу (58.7) 1-го тома). Соответственно уравнение плоской волны имеет следующий вид:

Амплитуда в точках плоскости

Теперь найдем уравнение сферической волны. Всякий реальный источник волн обладает некоторой протяженностью. Однако если ограничиться рассмотрением волны на расстояниях от источника, значительно превышающих его размеры, то источник можно считать точечным. В изотропной и однородной среде волна, порождаемая точечным источником, будет сферической. Допустим, что фаза колебаний источника равна Тогда точки, лежащие на волновой поверхности радиуса , будут колебаться с фазой

Уравнение волны – это уравнение, выражающее зависимость смещения колеблющейся частицы, участвующей в волновом процессе, от координаты ее равновесного положения и времени:

Эта функция должна быть периодической как относительно времени , так и относительно координат . Кроме того, точки, отстоящие на расстоянии l друг от друга, колеблются одинаковым образом.

Найдём вид функции x в случае плоской волны.

Рассмотрим плоскую гармоническую волну, распространяющуюся вдоль положительного направления оси в среде, не поглощающей энергию. В этом случае волновые поверхности будут перпендикулярны оси . Все величины, характеризующие колебательное движение частиц среды, зависят только от времени и координаты . Смещение будет зависеть только от и : . Пусть колебание точки с координатой (источник колебаний) задается функцией . Задача : найти вид колебания точек в плоскости, соответствующей произвольному значению . Для того, чтобы пройти путь от плоскости до этой плоскости, волне требуется время . Следовательно, колебания частиц, лежащих в плоскости , будут отставать по фазе на время от колебаний частиц в плоскости . Тогда уравнение колебаний частиц в плоскости будет иметь вид:

В итоге получили уравнение плоской волны распространяющейся в направлении возрастания :

. (3)

В этом уравнении – амплитуда волны; – циклическая частота; – начальная фаза, которая определяется выбором начала отсчета и ; – фаза плоской волны.

Пусть фаза волны будет величиной постоянной (зафиксируем значение фазы в уравнении волны):

Сократим это выражение на и продифференцируем. В итоге получим:

или .

Таким образом, скорость распространения волны в уравнении плоской волны есть не что иное, как скорость распространения фиксированной фазы волны. Такую скорость называют фазовой скоростью .

Для синусоидальной волны скорость переноса энергии равна фазовой скорости. Но синусоидальная волна не несёт никакой информации, а любой сигнал это модулированная волна, т.е. не синусоидальная (не гармоническая). При решении некоторых задач получается, что фазовая скорость больше скорости света. Здесь нет парадокса, т.к. скорость перемещения фазы не есть скорость передачи (распространения) энергии. Энергия, масса не могут двигаться со скоростью больше чем скорость света c .

Обычно уравнению плоской волны придают симметричный относительно и вид. Для этого вводится величина , которая называется волновым числом . Преобразуем выражение для волнового числа. Запишем его в виде (). Подставим это выражение в уравнение плоской волны:

Окончательно получим

Это уравнение плоской волны, распространяющейся в сторону возрастания . Противоположное направление распространения волны будет характеризоваться уравнением, в котором поменяется знак перед членом .

Удобна запись уравнения плоской волны в следующем виде.

Обычно знак Re опускают, подразумевая, что берётся только вещественная часть соответствующего выражения. Кроме этого вводится комплексное число.

Это число называется комплексной амплитудой. Модуль этого числа даёт амплитуду, а аргумент – начальную фазу волны.

Таким образом, уравнение плоской незатухающей волны можно представить в следующем виде.

Всё рассмотренное выше относилось к среде, где отсутствовало затухание волны. В случае затухания волны, в соответствии с законом Бугера (Пьер Бугер, французский учёный (1698 – 1758)), амплитуда волны будет уменьшаться при её распространении. Тогда уравнение плоской волны будет иметь следующий вид.

a – коэффициент затухания волна. A 0 – амплитуда колебаний в точке с координатами . Это величина обратная расстоянию, при котором амплитуда волны уменьшается в e раз.

Найдем уравнение сферической волны . Будем считать источник колебаний точечным. Это возможно, если ограничиться рассмотрением волны на расстоянии, много большем размеров источника. Волна от такого источника в изотропной и однородной среде будет сферической . Точки лежащие на волновой поверхности радиуса , будут колебаться с фазой

Амплитуда колебаний в этом случае, даже если энергия волны не поглощается средой, не будет оставаться постоянной. Она убывает с расстоянием от источника по закону . Следовательно, уравнение сферической волны имеет вид:

или

В силу сделанных предположений уравнение справедливо только при , значительно превышающих размеры источника волн. Уравнение (6) неприменимо для малых значений , т.к. амплитуда устремилась бы к бесконечности, а это абсурд.

При наличии затухания в среде уравнение сферической волны запишется следующим образом.

Групповая скорость

Строго монохроматическая волна представляет собой бесконечную во времени и пространстве последовательность "горбов" и "впадин".

Фазовая скорость этой волны или (2)

С помощью такой волны нельзя передать сигнал, т.к. в любой точке волны все "горбы" одинаковы. Сигнал должен отличаться. Быть знаком (меткой) на волне. Но тогда волна уже не будет гармонической, и не будет описываться уравнением (1). Сигнал (импульс) можно представить согласно теореме Фурье в виде суперпозиции гармонических волн с частотами, заключёнными в некотором интервале Dw . Суперпозиция волн, мало отличающихся друг от друга по частоте,


называется волновым пакетом или группой волн .

Выражение для группы волн может быть записано следующим образом.

(3)

Значок w подчеркивает, что эти величины зависят от частоты.

Этот волновой пакет может быть суммой волн с мало отличающимися частотами. Там, где фазы волн совпадают, наблюдается усиление амплитуды, а там, где фазы противоположны, наблюдается гашение амплитуды (результат интерференции). Такая картина представлена на рисунке. Чтобы суперпозицию волн можно было считать группой волн необходимо выполнение следующего условия Dw << w 0 .

В недиспергирующей среде все плоские волны, образующие волновой пакет, распространяются с одинаковой фазовой скоростью v . Дисперсия это зависимость фазовой скорости синусоидальной волны в среде от частоты. Явление дисперсии мы рассмотрим позже в разделе "Волновая оптика". В отсутствии дисперсии скорость перемещения волнового пакета совпадает с фазовой скорость v . В диспергирующей среде каждая волна диспергирует со своей скоростью. Поэтому волновой пакет с течением времени расплывается, его ширина увеличивается.

Если дисперсия невелика, то расплывание волнового пакета происходит не слишком быстро. Поэтому движению всего пакета можно приписать некоторую скорость U .

Скорость, с которой перемещается центр волнового пакета (точка с максимальным значением амплитуды) называется групповой скоростью .

В диспергирующей среде v¹ U . Вместе с движением самого волнового пакета происходит движение "горбов" внутри самого пакета. "Горбы" перемещаются в пространстве со скоростью v , а пакет в целом со скоростью U .

Рассмотрим подробнее движение волнового пакета на примере суперпозиции двух волн с одинаковой амплитудой и разными частотами w (разными длинами волн l ).

Запишем уравнения двух волн. Примем для простоты начальные фазы j 0 = 0.

Здесь

Пусть Dw << w , соответственно Dk << k .

Сложим колебания и проведём преобразования с помощью тригонометрической формулой для суммы косинусов:

В первом косинусе пренебрежём Dwt и Dkx , которые много меньше других величин. Учтём, что cos(–a) = cosa . Окончательно запишем.

(4)

Множитель в квадратных скобках изменяется от времени и координаты значительно медленнее, чем второй множитель. Следовательно, выражение (4) можно рассматривать как уравнение плоской волны с амплитудой, описываемой первым сомножителем. Графически волна, описываемая выражением (4) представлена на рисунке, изображённом выше.

Результирующая амплитуда получается в результате сложения волн, следовательно, будут наблюдаться максимумы и минимумы амплитуды.

Максимум амплитуды будет определяться следующим условием.

(5)

m = 0, 1, 2…

x max – координата максимальной амплитуды.

Косинус принимает максимальное значение по модулю через p .

Каждый из этих максимумов можно рассматривать как центр соответствующей группы волн.

Разрешив (5) относительно x max получим.

Так как фазовая скорость , то называется групповой скоростью. С такой скоростью перемещается максимум амплитуды волнового пакета. В пределе, выражение для групповой скорости будет иметь следующий вид.

(6)

Это выражение справедливо для центра группы произвольного числа волн.

Следует отметить, что при точном учёте всех членов разложения (для произвольного числа волн), выражение для амплитуды получается таким, что из него следует, что волновой пакет со временем расплывается.
Выражению для групповой скорости можно придать другой вид.

В отсутствии дисперсии

Максимум интенсивности приходится на центр группы волн. Поэтому скорость переноса энергии равна групповой скорости.

Понятие групповой скорости применимо только при условии, что поглощение волны в среде невелико. При значительном затухании волн понятие групповой скорости утрачивает смысл. Этот случай наблюдается в области аномальной дисперсии. Это мы будем рассматривать в разделе "Волновая оптика".

При описании волнового процесса требуется найти амплитуды и фазы колебательного движения в различных точках среды и изменение этих величин с течением времени. Эта задача может быть решена в том случае, если известно, по какому закону колеблется и как взаимодействует со средой тело, вызвавшее волновой процесс. Однако во многих случаях не существенно, каким телом возбуждена данная волна, а решается более простая задача. Задано состояние колебательного движения в некоторых точках среды в определенный момент времени и требуется определить состояние колебательного движения в других точках среды.

Для примера рассмотрим решение такой задачи в простом, но вместе с тем важным случае распространения в среде плоской или сферической гармонической волны. Обозначим колеблющуюся величину через u . Этой величиной могут быть: смещение частиц среды относительно их положения равновесия, отклонения давления в данном месте среды от равновесного значения и т.д. Тогда задача будет состоять в отыскании так называемого уравнения волны – выражения, которое задает колеблющуюся величину u как функцию координат точек среды x , y , z и времени t :

u = u (x , y , z , t ). (2.1)

Пусть для простоты u – это смещение точек в упругой среде, когда в ней распространяется плоская волна, а колебания точек имеют гармонический характер. Кроме того, направим оси координат так, чтобы ось совпала с направлением распространения волны. Тогда волновые поверхности (семейство плоскостей) будут перпендикулярными к оси (рис. 7), и поскольку все точки волновой поверхности колеблются одинаково, смещение u будет зависеть только от х и t : u = u (x , t ). Для гармонических колебаний точек, лежащих в плоскости х = 0 (рис. 9), справедливо уравнение:

u (0, t ) = A cos (ωt + α ) (2.2)


Найдем вид колебаний точек плоскости, соответствующей произвольному значению х . Для того чтобы пройти путь от плоскости х = 0 до этой плоскости, волне требуется время τ = х/с (с – скорость распространения волны). Следовательно, колебания частиц, лежащих в плоскости х , будут иметь вид:

Итак, уравнение плоской волны (и продольной, и поперечной), распространяющейся в направлении оси 0х, выглядит следующим образом:

(2.3)

Величина А представляет собой амплитуду волны. Начальная фаза волны α определяется выбором начал отсчета х и t .

Зафиксируем какое-либо значение фазы, стоящей в квадратных скобках уравнения (2.3), положив

(2.4)

Продифференцируем это равенство по времени с учетом того, что циклическая частота ω и начальная фаза α являются постоянными:

Таким образом, скорость распространения волны с в уравнении (2.3) есть скорость перемещения фазы, в связи с чем ее называют фазовой скоростью . В соответствии с (2.5) dx /dt > 0. Следовательно, уравнение (2.3) описывает волну, распространяющуюся в направлении возрастания х , так называемую бегущую прогрессивную волну . Волна, распространяющаяся в противоположном направлении, описывается уравнением

и называется бегущей регрессивной волной . Действительно, приравняв константе фазу волны (2.6) и продифференцировав получившееся равенство, придем к соотношению:

из которого следует, что волна (2.6) распространяется в сторону убывания х .

Введем величину

которая называется волновым числом и равна количеству длин волн, укладывающихся на интервале 2π метров. С помощью формул λ = с/ν и ω = 2πν волновое число можно представить в виде

(2.8)

Раскрыв скобки в формулах (2.3) и (2.6) и приняв во внимание (2.8), придем к следующему уравнению плоских волн, распространяющихся вдоль (знак «-») и против (знак «+») оси 0х :

При выводе формул (2.3) и (2.6) предполагалось, что амплитуда колебаний не зависит от х . Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. Опыт показывает, что в поглощающей среде интенсивность волны по мере удаления от источника колебаний постепенно уменьшается – наблюдается затухание волны по экспоненциальному закону:

.

Соответственно, уравнение плоской затухающей волны имеет вид:

где A 0 – амплитуда в точках плоскости х = 0, а γ – коэффициент затухания.

Теперь найдем уравнение сферической волны . Всякий реальный источник волн обладает некоторой протяженностью. Однако если ограничиться рассмотрением волны на расстояниях от источника, много больших его размеров, то источник можно считать точечным . В изотропной и однородной среде волна, порождаемая точечным источником, будет сферической. Допустим, что фаза колебаний источника ωt+α . Тогда точки, лежащие на волновой поверхности радиуса r , будут колебаться с фазой

Амплитуда колебаний в этом случае, даже если энергия волны не поглощается средой, постоянной не останется – она убывает в зависимости от расстояния от источника по закону 1/r . Следовательно, уравнение сферической волны имеет вид:

(2.11)

где А – постоянная величина, численно равная амплитуде колебаний на расстоянии от источника, равном единице.

Для поглощающей среды в (2.11) нужно добавить множитель e - γr . Напомним, что в силу сделанных предположений уравнение (2.11) справедливо только для r , значительно превышающих размеры источника колебаний. При стремлении r к нулю амплитуда обращается в бесконечность. Этот абсурдный результат объясняется неприменимостью уравнения (2.11) для малых r .

ПЛОСКАЯ ВОЛНА

ПЛОСКАЯ ВОЛНА

Волна, у к-рой направление распространения одинаково во всех точках пространства. Простейший пример - однородная монохроматич. незатухающая П. в.:

и(z, t)=Aeiwt±ikz, (1)

где А - амплитуда, j= wt±kz - , w=2p/Т - круговая частота, Т -период колебаний, k - . Поверхности постоянной фазы (фазовые фронты) j=const П. в. являются плоскостями.

При отсутствии дисперсии, когда vф и vгр одинаковы и постоянны (vгр=vф= v), существуют стационарные (т. е. перемещающиеся как целое) бегущие П. в., к-рые допускают общее представление вида:

u(z, t)=f(z±vt), (2)

где f - произвольная функция. В нелинейных средах с дисперсией также возможны стационарные бегущие П. в. типа (2), но их форма уже не произвольна, а зависит как от параметров системы, так и от характера движения . В поглощающих (диссипативных) средах П. в. уменьшают свою амплитуду по мере распространения; при линейном затухании это может быть учтено путём замены в (1) k на комплексное волновое число kд ± ikм, где kм - коэфф. затухания П. в.

Однородная П. в., занимающая всё бесконечное , является идеализацией, однако любое волновое , сосредоточенное в конечной области (напр., направляемое линиями передачи или волноводами), можно представить как суперпозицию П. в. с тем или иным пространств. спектром k. При этом волна может по-прежнему иметь плоский фазовый фронт, но неоднородное амплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отдельные участки сферич. и цилиндрич. волн, малые по сравнению с радиусом кривизны фазового фронта, приближённо ведут себя как П. в.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПЛОСКАЯ ВОЛНА

- волна, ук-рой направление распространения одинаково во всех точках пространства.

где А - амплитуда,- фаза,- круговая частота, Т - период колебаний, k - волновое число. = const П. в. являются плоскостями.
При отсутствии дисперсии, когда фазоваяскорость v ф и групповая v гр одинаковы и постоянны (v гр = v ф = v ) существуют стационарные (т. е. перемещающиеся как целое) бегущиеП. в., к-рые можно представить в общем виде

где f - произвольная ф-ция. В нелинейныхсредах с дисперсией также возможны стационарные бегущие П. в. типа (2),но их форма уже не произвольна, а зависит как от параметров системы, таки от характера движения волны. В поглощающих (диссипативных) средах П. k на комплексное волновоечисло k д ik м,где k м - коэф. затухания П. в. Однородная П. в., занимающаявсё бесконечное , является идеализацией, однако любое волновоеполе, сосредоточенное в конечной области (напр., направляемое линиямипередачи или волноводами), можно представить как суперпозициюП. в. с тем или иным пространственным спектром k. При этом волнаможет no-прежнему иметь плоский фазовый фронт, во неоднородное распределениеамплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отд. участкисферич. или цилиндрич. волн, малые по сравнению с радиусом кривизны фазовогофронта, приближённо ведут себя как П. в.

Лит. см. при ст. Волны.

М. А. Миллер, Л. А. Островский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Похожие статьи