Теории дрейфа материков и литосферных плит. Урок строение земной коры Мантийная конвекция и геодинамические процессы

December 10th, 2015

Кликабельно

Согласно современной теории литосферных плит вся литосфера узкими и активными зонами - глубинными разломами - разделена на отдельные блоки, перемещающиеся в пластичном слое верхней мантии относительно друг друга со скоростью 2-3 см в год. Эти блоки называются литосферными плитами.

Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила.

Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной теории тектоники плит. Основные положения тектоники плит сформулированы в 1967-68 группой американских геофизиков — У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов.

Утверждается, что ученые не совсем уверены, что вызывает эти самые сдвиги и как обозначились границы тектонических плит. Существует бессчетное множество различных теорий, но ни одна из них полностью не объясняет все аспекты тектонической активности.

Давайте хотя бы узнаем как это себе представляют сейчас.

Вегенер писал: «В 1910 г. мне впервые пришла в голову мысль о перемещении материков…, когда я поразился сходством очертаний берегов по обе стороны Атлантического океана». Он предположил, что в раннем палеозое на Земле существовали два крупных материка - Лавразия и Гондвана.

Лавразия - это был северный материк, который включал территории современной Европы, Азии без Индии и Северной Америки. Южный материк - Гондвана объединял современные территории Южной Америки, Африки, Антарктиды, Австралии и Индостана.

Между Гондваной и Лавразией находилось первое морс - Тетис, как огромный залив. Остальное пространство Земли было занято океаном Панталасса.

Около 200 млн лет назад Гондвана и Лавразия были объединены в единый континент - Пангею (Пан - всеобщий, Ге - земля)

Примерно 180 млн лет назад материк Пангея снова начал разделяться на составные части, которые перемешались но поверхности нашей планеты. Разделение происходило следующим образом: сначала вновь появились Лавразия и Гондвана, потом разделилась Лавразия, а затем раскололась и Гондвана. За счет раскола и расхождения частей Пангеи образовались океаны. Молодыми океанами можно считать Атлантический и Индийский; старым - Тихий. Северный Ледовитый океан обособился при увеличении суши в Северном полушарии.

А. Вегенер нашел много подтверждений существованию единого материка Земли. Особенно убедительным показалось ему существование в Африке и в Южной Америке остатков древних животных - листозавров. Это были пресмыкающиеся, похожие на небольших гиппопотамов, обитавшие только в пресноводных водоемах. Значит, проплыть огромные расстояния по соленой морской воде они не могли. Аналогичные доказательства он нашел и в растительном мире.

Интерес к гипотезе движения материков в 30-е годы XX в. несколько снизился, но в 60-е годы возродился вновь, когда в результате исследований рельефа и геологии океанического дна были получены данные, свидетельствующие о процессах расширения (спрединга) океанической коры и «подныривания» одних частей коры под другие (субдукции).

Строение континентального рифта

Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.
Подошва литосферы является изотермой приблизительно равной 1300°С, что соответствует температуре плавления (солидуса) мантийного материала при литостатическом давлении, существующем на глубинах первые сотни километров. Породы, лежащие в Земле над этой изотермой, достаточно холодны и ведут себя как жесткий материал, в то время как нижележащие породы того же состава достаточно нагреты и относительно легко деформируются.

Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит.

Границы плит являются областями сейсмической, тектонической и магматической активности; внутренние области плит слабо сейсмичны и характеризуются слабой проявленностью эндогенных процессов.
Более 90 % поверхности Земли приходится на 8 крупных литосферных плит:

Некоторые литосферные плиты сложены исключительно океанической корой (например, Тихоокеанская плита), другие включают фрагменты и океанической и континентальной коры.

Схема образования рифта

Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения.

Дивергентные границы – границы, вдоль которых происходит раздвижение плит. Геодинамическую обстановку, при которой происходит процесс горизонтального растяжения земной коры, сопровождающийся возникновением протяженных линейно вытянутых щелевых или ровообразных впадин называют рифтогенезом. Эти границы приурочены к континентальным рифтам и срединно-океанических хребтам в океанических бассейнах. Термин «рифт» (от англ. rift – разрыв, трещина, щель) применяется к крупным линейным структурам глубинного происхождения, образованным в ходе растяжения земной коры. В плане строения они представляют собой грабенообразные структуры. Закладываться рифты могут и на континентальной, и на океанической коре, образуя единую глобальную систему, ориентированную относительно оси геоида. При этом эволюция континентальных рифтов может привести к разрыву сплошности континентальной коры и превращению этого рифта в рифт океанический (если расширение рифта прекращается до стадии разрыва континентальной коры, он заполняется осадками, превращаясь в авлакоген).

Процесс раздвижения плит в зонах океанских рифтов (срединно-океанических хребтов) сопровождается образованием новой океанической коры за счёт магматических базальтовых расплав поступающих из астеносферы. Такой процесс образования новой океанической коры за счёт поступления мантийного вещества называется спрединг (от англ. spread – расстилать, развёртывать).

Строение срединно-океанического хребта. 1 – астеносфера, 2 – ультраосновные породы, 3 – основные породы (габброиды), 4 – комплекс параллельных даек, 5 – базальты океанического дна, 6 – сегменты океанической коры, образовавшие в разное время (I-V по мере удревнения), 7 – близповерхностный магматический очаг (с ультраосновной магмой в нижней части и основной в верхней), 8 – осадки океанического дна (1-3 по мере накопления)

В ходе спрединга каждый импульс растяжения сопровождается поступлением новой порции мантийных расплавов, которые, застывая, наращивают края расходящихся от оси СОХ плит. Именно в этих зонах происходит формирование молодой океанической коры.

Столкновение континентальной и океанической литосферных плит

Субдукция – процесс поддвига океанской плиты под континентальную или другую океаническую. Зоны субдукции приурочены к осевым частям глубоководных желобов, сопряжённых с островными дугами (являющихся элементами активных окраин). На субдукционные границы приходится около 80% протяжённости всех конвергентных границ.

При столкновении континентальной и океанической плит естественным явлением является поддвиг океанической (более тяжёлой) под край континентальной; при столкновении двух океанических погружается более древняя (то есть более остывшая и плотная) из них.

Зоны субдукции имеют характерное строение: их типичными элементами служат глубоководный желоб – вулканическая островная дуга – задуговый бассейн. Глубоководный желоб образуется в зоне изгиба и поддвигасубдуцирующей плиты. По мере погружения эта плита начинает терять воду (находящуюся в изобилии в составе осадков и минералов), последняя, как известно, значительно снижает температуру плавления пород, что приводит к образованию очагов плавления, питающих вулканы островных дуг. В тылу вулканической дуги обычно происходит некоторое растяжение, определяющее образование задугового бассейна. В зоне задугового бассейна растяжение может быть столь значительным, что приводит к разрыву коры плиты и раскрытию бассейна с океанической корой (так называемый процесс задугового спрединга).

Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. Но такое мнение не является единственным и окончательно доказанным. Не исключено, что объём планы меняется пульсационно, или происходит уменьшение его уменьшение за счёт охлаждения.

Погружение субдуцирующей плиты в мантию трассируется очагами землетрясений, возникающих на контакте плит и внутри субдуцирующей плиты (более холодной и вследствие этого более хрупкой, чем окружающие мантийные породы). Эта сейсмофокальная зона получила название зона Беньофа-Заварицкого. В зонах субдукции начинается процесс формирования новой континентальной коры. Значительно более редким процессом взаимодействия континентальной и океанской плит служит процесс обдукции – надвигания части океанической литосферы на край континентальной плиты. Следует подчеркнуть, что в ходе этого процесса происходит расслоение океанской плиты, и надвигается лишь её верхняя часть – кора и несколько километров верхней мантии.

Столкновение континентальных литосферных плит

При столкновении континентальных плит, кора которых более лёгкая, чем вещество мантии, и вследствие этого не способна в неё погрузиться, протекает процесс коллизии. В ходе коллизии края сталкивающихся континентальных плит дробятся, сминаются, формируются системы крупных надвигов, что приводит к росту горных сооружений со сложным складчато-надвиговым строением. Классическим примером такого процесса служит столкновение Индостанской плиты с Евразийской, сопровождающееся ростом грандиозных горных систем Гималаев и Тибета. Процесс коллизии сменяет процесс субдукции, завершая закрытие океанического бассейна. При этом в начале коллизионного процесса, когда края континентов уже сблизились, коллизия сочетается с процессом субдукции (продолжается погружение под край континента остатков океанической коры). Для коллизионных процессов типичны масштабный региональный метаморфизм и интрузивный гранитоидный магматизм. Эти процессы приводят к созданию новой континентальной коры (с её типичным гранито-гнейсовым слоем).

Основной причиной движения плит служит мантийная конвекция, обусловленная мантийными теплогравитационными течениями.

Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей. При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются в мантии, где далее подвергается дифференциации.

Нагретые в центральных зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла в близповерхностных зонах. Этот процесс переноса тепла идёт непрерывно, в результате чего возникают упорядоченные замкнутые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения определяет горизонтальное перемещение вещества астеносферы и расположенных на ней плит. В целом, восходящие ветви конвективных ячей располагаются под зонами дивергентных границ (СОХ и континентальными рифтами), нисходящие – под зонами конвергентных границ. Таким образом, основная причина движения литосферных плит – «волочение» конвективными течениями. Кроме того, на плиты действуют ещё рад факторов. В частности, поверхность астеносферы оказывается несколько приподнятой над зонами восходящих ветвей и более опущенной в зонах погружения, что определяет гравитационное «соскальзывание» литосферной плиты, находящейся на наклонной пластичной поверхности. Дополнительно действуют процессы затягивания тяжёлой холодной океанской литосферы в зонах субдукции в горячую, и как следствие менее плотную, астеносферу, а также гидравлического расклинивания базальтами в зонах СОХ.

К подошве внутриплитовых частей литосферы приложены главные движущие силы тектоники плит – силы мантийного “волочения” (англ. drag) FDO под океанами и FDC под континентами, величина которых зависит в первую очередь от скорости астеносферного течения, а последняя определяется вязкостью и мощностью астеносферного слоя. Так как под континентами мощность астеносферы значительно меньше, а вязкость значительно больше, чем под океанами, величина силы FDC почти на порядок уступает величине FDO. Под континентами, особенно их древними частями (материковыми щитами), астеносфера почти выклинивается, поэтому континенты как бы оказываются “сидящими на мели”. Поскольку большинство литосферных плит современной Земли включают в себя как океанскую, так и континентальную части, следует ожидать, что присутствие в составе плиты континента в общем случае должно “тормозить” движение всей плиты. Так оно и происходит в действительности (быстрее всего движутся почти чисто океанские плиты Тихоокеанская, Кокос и Наска; медленнее всего – Евразийская, Северо-Американская, Южно-Американская, Антарктическая и Африканская, значительную часть площади которых занимают континенты). Наконец, на конвергентных границах плит, где тяжелые и холодные края литосферных плит (слэбы) погружаются в мантию, их отрицательная плавучесть создает силу FNB (индекс в обозначении силы – от английского negative buoyance). Действие последней приводит к тому, что субдуцирующая часть плиты тонет в астеносфере и тянет за собой всю плиту, увеличивая тем самым скорость ее движения. Очевидно, сила FNB действует эпизодически и только в определенных геодинамических обстановках, например в случаях описанного выше обрушения слэбов через раздел 670 км.

Таким образом, механизмы, приводящие в движение литосферные плиты, могут быть условно отнесены к следующим двум группам: 1) связанные с силами мантийного “волочения” (mantle drag mechanism), приложенными к любым точкам подошвы плит, на рисунке – силы FDO и FDC; 2) связанные с силами, приложенными к краям плит (edge-force mechanism), на рисунке – силы FRP и FNB. Роль того или иного движущего механизма, а также тех или иных сил оценивается индивидуально для каждой литосферной плиты.

Совокупность этих процессов отражает общий геодинамический процесс, охватывающих области от поверхностных до глубинных зон Земли. В настоящее время в мантии Земли развивается двухъячейковая мантийная конвекция с закрытыми ячейками (согласно модели сквозьмантийной конвекции) или раздельная конвекция в верхней и нижней мантии с накоплением слэбов под зонами субдукции (согласно двухъярусной модели). Вероятные полюсы подъема мантийного вещества расположены в северо-восточной Африке (примерно под зоной сочленения Африканской, Сомалийской и Аравийской плит) и в районе острова Пасхи (под срединным хребтом Тихого океана – Восточно-Тихоокеанским поднятием). Экватор опускания мантийного вещества проходит примерно по непрерывной цепи конвергентных границ плит по периферии Тихого и восточной части Индийского океанов.Современный режим мантийной конвекции, начавшийся примерно 200 млн. лет назад распадом Пангеи и породивший современные океаны, в будущем сменится на одноячейковый режим (по модели сквозьмантийной конвекции) или (по альтернативной модели) конвекция станет сквозьмантийной за счет обрушения слэбов через раздел 670 км. Это, возможно, приведет к столкновению материков и формированию нового суперконтинента, пятого по счету в истории Земли.

Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота. На основании этого положения может быть реконструировано положение континентов в прошлые геологические эпохи. Анализ перемещений континентов привёл к выводу, что каждые 400-600 млн. лет они объединяются в единый суперконтинент, подвергающийся в дальнейшем распаду. В результате раскола такого суперконтинента Пангеи, произошедшего 200-150 млн. лет назад, и образовались современные континенты.

Тектоника литосферных плит - это первая общегеологическая концепция, которую можно было проверить. Такая проверка была проведена. В 70-х гг. была организована программа глубоководного бурения. В рамках этой программы буровым судном «Гломар Челленджер», было пробурено несколько сотен скважин, которые показали хорошую сходимость возрастов, оцененных по магнитным аномалиям, с возрастами, определенными по базальтам или по осадочным горизонтам. Схема распространения разновозрастных участков океанической коры показана на рис.:

Возраст океанской коры по магнитным аномалиям (Кеннет, 1987): 1 - области отсутствия данных и суша; 2–8 - возраст: 2 - голоцен, плейстоцен, плиоцен (0–5 млн лет); 3 - миоцен (5–23 млн лет); 4 - олигоцен (23–38 млн лет); 5 - эоцен (38–53 млн лет); 6 - палеоцен (53–65 млн лет) 7 - мел (65–135 млн лет) 8 - юра (135–190 млн лет)

В конце 80-х гг. завершился еще один эксперимент по проверке движения литосферных плит. Он был основан на измерении базовых линий по отношению к далеким квазарам. На двух плитах выбирались точки, в которых, с использованием современных радиотелескопов, определялось расстояние до квазаров и угол их склонения, и, соответственно, рассчитывались расстояния между точками на двух плитах, т. е., определялась базовая линия. Точность определения составляла первые сантиметры. Через несколько лет измерения повторялись. Была получена очень хорошая сходимость результатов, рассчитанных по магнитным аномалиям, с данными, определенными по базовым линиям

Схема, иллюстрирующая результаты измерений взаимного перемещения литосферных плит, полученные методом интерферометрии со сверхдлинной базой - ИСДБ (Картер, Робертсон, 1987). Движение плит изменяет длину базовой линии между радиотелескопами, расположенными на разных плитах. На карте Северного полушария показаны базовые линии, на основании измерений которых по методу ИСДБ получено достаточное количество данных, чтобы сделать надежную оценку скорости изменения их длины (в сантиметрах в год). Числа в скобках указывают величину смещения плит, рассчитанную по теоретической модели. Почти во всех случаях расчетная и измеренная величины очень близки

Таким образом, тектоника литосферных плит за эти годы прошла проверку рядом независимых методов. Она признана мировым научным сообществом в качестве парадигмы геологии в настоящее время.

Зная положение полюсов и скорости современного перемещения литосферных плит, скорости раздвижения и поглощения океанического дна, можно наметить путь движения континентов в будущем и представить их положение на какой-то отрезок времени.

Такой прогноз был сделан американскими геологами Р. Дитцем и Дж. Холденом. Через 50 млн. лет, по их предположениям, Атлантический и Индийский океаны разрастутся за счет Тихого, Африка сместится на север и благодаря этому постепенно ликвидируется Средиземное море. Гибралтарский пролив исчезнет, а «повернувшаяся» Испания закроет Бискайский залив. Африка будет расколота великими африканскими разломами и восточная ее часть сместится на северо-восток. Красное море настолько расширится, что отделит Синайский полуостров от Африки, Аравия переместится на северо-восток и закроет Персидский залив. Индия все сильнее будет надвигаться на Азию, а значит, Гималайские горы будут расти. Калифорния по разлому Сан-Андреас отделится от Северной Америки, и на этом месте начнет формироваться новый океанический бассейн. Значительные изменения произойдут в южном полушарии. Австралия пересечет экватор и придет в соприкосновение с Евразией. Этот прогноз требует значительного уточнения. Многое здесь еще остается дискуссионным и неясным.

источники

http://www.pegmatite.ru/My_Collection/mineralogy/6tr.htm

http://www.grandars.ru/shkola/geografiya/dvizhenie-litosfernyh-plit.html

http://kafgeo.igpu.ru/web-text-books/geology/platehistory.htm

http://stepnoy-sledopyt.narod.ru/geologia/dvizh/dvizh.htm

А я вам давайте напомню , а вот интересные и вот такой . Посмотрите на и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Уважаемые читатели! Если вы выберете ЕГЭ в качестве выпускного или вступительного экзамена по биологии, то вам необходимо знать и понимать требования, предъявляемые к сдаче этого экзамена, характер вопросов и заданий, встречающихся в экзаменационных работах. В помощь абитуриентам в издательстве ЭКСМО выйдет книга «Биология. Сборник заданий по подготовке к ЕГЭ». Эта книга – тренировочное пособие, именно поэтому вошедший в нее материал превышает школьный уровень требований. Однако тем старшеклассникам, которые решат поступать в высшие учебные заведения на факультеты, где сдают биологию, такой подход будет полезен.

В нашей газете мы публикуем только задания части С к каждому разделу. Они полностью обновлены и по содержанию, и по структуре изложения. Так как это пособие ориентировано на экзамены 2009/2010 учебного года, то мы решили дать варианты заданий части С в значительно большем объеме, чем это делалось в предыдущие годы.

Вам предлагаются примерные варианты вопро-сов и заданий разного уровня сложности с разным количеством элементов правильного ответа. Это делается для того, чтобы на экзамене у вас был достаточно большой выбор возможных правильных ответов на конкретный вопрос. Кроме того, вопросы и задания части С построены так: дается один вопрос и элементы правильного ответа к нему, а затем предлагаются варианты этого вопроса для самостоятельного размышления. Ответы на эти варианты должны получить вы сами, применяя как знания, полученные при изучении материала, так и знания, полученные при прочтении ответов на основной вопрос. Отвечать на все вопросы следует письменно.

Значительная часть заданий части С – это задания в рисунках. Аналогичные им уже были в экзаменационных работах 2008 г. В данном пособии их набор несколько расширен.

Мы надеемся, что это учебное пособие поможет старшеклассникам не только подготовиться к экзаменам, но и даст возможность желающим усвоить основы биологии за оставшиеся два года обучения в 10–11-х классах.

Общая биология (часть С)

Задания этой части распределены по разделам: цитология, генетика, эволюционная теория, экология. В каждом из разделов предлагаются задания всех уровней ЕГЭ. Такое построение общебиологической части пособия позволит вам более полно и системно подготовиться к сдаче экзамена, т.к. часть С включает в себя в обобщенном виде практически весь материал частей А и В.

Задания группы С1 (повышенный уровень)

На все задания группы С необходимо давать письменные ответы с объяснениями.

Вопросы по цитологии

Ответ на это вопрос должен быть кратким, но точным. Главными в этом вопросе являются слова – «уровни организации» и «научные основания». Уровень организации – это способ и форма существования живых систем. Например, клеточный уровень организации включает клетки. Следовательно, необходимо выяснить то общее, что позволило выделить уровни организации. Таким общим является системность организации живых тел и их постепенное усложнение (иерархия).

Элементы правильного ответа

Научными основаниями для разделения живых систем на уровни служат следующие положения.

1. Живые системы усложняются по мере развития: клетка – ткань – организм – популяция – вид и т.д.

2. Каждая более высоко организованная живая система включает в себя предыдущие системы. Ткани состоят из клеток, органы из тканей, организм из органов и т.д.

Ответьте самостоятельно на следующие вопросы

    Какими общими свойствами обладают все уровни организации жизни?

    Что общего и различного между клеточным и популяционным уровнями жизни?

    Докажите, что на клеточном уровне проявляются все свойства живых систем.

Элементы правильного ответа

1. К модели можно применить воздействия, неприменимые к живым телам.

2. Моделирование позволяет изменять любые характеристики объекта.

Ответьте самостоятельно

    Как бы вы объяснили высказывание И.П. Павлова «Наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что он хочет»?

    Приведите два примера использования экспериментального метода в цитологии.

    С помощью каких методов исследования можно разделять различные клеточные структуры?

Элементы правильного ответа

1. Полярность молекулы воды определяет ее способность растворять другие гидрофильные вещества.

2. Способность молекул воды к образованию и разрыву водородных связей между ними обеспечивает воде теплоемкость и теплопроводность, переход из одного агрегатного состояния в другие.

3. Малые размеры молекул обеспечивают их способность проникать между молекулами других веществ.

Ответьте самостоятельно

    Что произойдет с клеткой, если концентрация солей в ней будет выше, чем вне клетки?

    Почему в физиологическом растворе клетки не сморщиваются и не лопаются от набухания?

Элементы правильного ответа

1. Ученые выяснили, что молекула белка имеет первичную, вторичную, третичную и четвертичную структуры.

2. Ученые выяснили, что молекула белка состоит из множества различных аминокислот, связанных пептидными связями.

3. Ученые установили последовательность аминокислотных остатков в молекуле рибонуклеазы, т.е. ее первичную структуру.

Ответьте самостоятельно

    Какие химические связи участвуют в образовании молекулы белка?

    Какие факторы могут привести к денатурации белка?

    Каковы особенности строения и функций ферментов?

    В каких процессах проявляются защитные функции белков?

Элементы правильного ответа

1. Указанные органические соединения выполняют строительную (структурную) функцию.

2. Указанные органические соединения выполняют энергетическую функцию.

Ответьте самостоятельно

    Почему пищу, богатую целлюлозой, назначают для нормализации работы кишечника?

    В чем заключается строительная функция углеводов?

Элементы правильного ответа

1. ДНК построена по принципу двойной спирали в соответствии с правилом комплементарности.

2. ДНК состоит из повторяющихся элементов – 4 видов нуклеотидов. Разная последовательность нуклеотидов кодирует различную информацию.

3. Молекула ДНК способна к самовоспроизведению, а следовательно, к копированию информации и ее передаче.

Ответьте самостоятельно

    Какие факты доказывают индивидуальность ДНК отдельной особи?

    Что означает понятие «универсальность генетического кода»; какие факты подтверждают эту универсальность?

    В чем заключается научная заслуга Д.Уотсона и Ф.Крика?

Элементы правильного ответа

1. Различия в названия ДНК и РНК объясняются составом их нуклеотидов: в нуклеотидах ДНК углевод дезоксирибоза, а в РНК – рибоза.

2. Различия в названиях видов РНК (информационная, транспортная, рибосомальная) связаны с выполняемыми ими функциями.

Ответьте самостоятельно

    Какие два условия должны быть постоянными, чтобы связи между двумя комплементарными цепями ДНК не разрушались самопроизвольно?

    Чем различаются ДНК и РНК по строению?

    В состав каких еще соединений входят нуклеотиды и что вы о них знаете?

Элементы правильного ответа

1. Клеточная теория установила структурную и функциональную единицу живого.

2. Клеточная теория установила единицу размножения и развития живого.

3. Клеточная теория подтвердила общность строения и происхождения живых систем.

Ответьте самостоятельно

    Почему, несмотря на очевидные различия в строении и функциях клеток разных тканей, говорят о единстве клеточного строения живого?

    Назовите основные открытия в биологии, позволившие сформулировать клеточную теорию.

Элементы правильного ответа

1. Вещества проникают в клетку путем диффузии.

2. Вещества проникают в клетку благодаря активному транспорту.

3. Вещества проникают в клетку путем пиноцитоза и фагоцитоза.

Ответьте самостоятельно

    Чем отличается активный транспорт веществ через клеточную мембрану от пассивного?

    Какие вещества и как выводятся из клетки?

Элементы правильного ответа

1. У прокариот в клетке отсутствует ядро, митохондрии, аппарат Гольджи и эндоплазматическая сеть.

2. У прокариот нет подлинного полового размножения.

Ответьте самостоятельно

    Почему зрелые эритроциты или тромбоциты не относят к прокариотным клеткам, несмотря на отсутствие в них ядер?

    Почему вирусы не относят к самостоятельным организмам?

    Почему эукариотические организмы более разнообразны по своему строению и уровню сложности?

Элементы правильного ответа

1. По хромосомному набору животного можно определить его вид.

2. По хромосомному набору животного можно определить его пол.

3. По хромосомному набору животного можно определить наличие или отсутствие наследственных заболеваний.

Ответьте самостоятельно

    В каждой ли клетке многоклеточного организма существуют хромосомы? Ответ докажите примерами.

    Как и когда можно увидеть хромосомы в клетке?

Элементы правильного ответа

Структурными элементами комплекса Гольджи являются:

1) трубочки;
2) полости;
3) пузырьки.

Ответьте самостоятельно

    Каково строение хлоропласта?

    Каково строение митохондрии?

    Что должно содержаться в митохондриях, чтобы они могли синтезировать белки?

    Докажите, что и митохондрии, и хлоропласты могут размножаться.

Элементы правильного ответа

Следует отметить различия в:

1) характере обмена веществ;
2) сроках жизни;
3) размножении.

Ответьте самостоятельно

    Как скажется на одноклеточном организме пересадка ему ядра от другого организма?

Элементы правильного ответа

1. Наличие двойной мембраны с характерными ядерными порами, за счет чего обеспечивается связь ядра с цитоплазмой.

2. Наличие ядрышек, в которых синтезируется РНК и формируются рибосомы.

3. Наличие хромосом, являющихся наследственным аппаратом клетки и обеспечивающих деление ядра.

Ответьте самостоятельно

    Какие клетки не содержат ядер?

    Почему безъядерные клетки прокариот размножаются, а безъядерные клетки эукариот – нет?

Элементы правильного ответа

1. Большинство клеток сходно по основным элементам строения, жизненным свойствам и процессу деления.

2. Клетки отличаются друг от друга наличием органоидов, специализацией по выполняемым функциям, интенсивностью обмена веществ.

Ответьте самостоятельно

    Приведите примеры соответствия строения клетки ее функции.

    Приведите примеры клеток с разным уровнем интенсивности обмена веществ.

Элементы правильного ответа

1. В результате синтеза образуются более сложные вещества, чем вступившие в реакцию; реакция идет с поглощением энергии.

2. При распаде образуются более простые вещества, чем вступившие в реакцию; реакция идет с выделением энергии.

Ответьте самостоятельно

    Каковы функции ферментов в реакциях обмена веществ?

    Почему в биохимических реакциях участвует более 1000 ферментов?

17. В какие виды энергии превращается световая энергия при фотосинтезе и где происходит это превращение?

Элементы правильного ответа

1. Световая энергия преобразуется в химическую и тепловую энергию.

2. Все превращения происходят в тилакоидах гран хлоропластов и в их матриксе (у растений); в других фотосинтезирующих пигментах (у бактерий).

Ответьте самостоятельно

    Что происходит в световой фазе фотосинтеза?

    Что происходит в темновой фазе фотосинтеза?

    Почему экспериментально трудно обнаружить процесс дыхания растений в дневное время?

Элементы правильного ответа

1. Код «триплетен» означает, что каждая из аминокислот кодируется тремя нуклеотидами.

2. Код «однозначен» – каждый триплет (кодон) кодирует только одну аминокислоту.

3. Код «вырожден» означает, что каждая аминокислота может кодироваться более чем одним кодоном.

Ответьте самостоятельно

    Зачем нужны «знаки препинания» между генами и почему их нет внутри генов?

    Что означает понятие «универсальность кода ДНК»?

    В чем заключается биологический смысл транскрипции?

Элементы правильного ответа

1. Примерами организмов, у которых происходит чередование поколений, могут быть мхи, папоротники, медузы и другие.

2. У растений происходит смена гаметофита и спорофита. У медуз чередуются стадии полипа и медузы.

Ответьте самостоятельно

    В чем заключаются основные различия между митозом и мейозом?

    В чем разница между понятиями «клеточный цикл» и «митоз»?

Элементы правильного ответа

1. Изолированные клетки организма, живущие в искусственной среде, называются клеточной культурой (или культурой клеток).

2. Клеточные культуры используют для получения антител, лекарственных веществ, а также для диагностики заболеваний.

Элементы правильного ответа

1. Интерфаза необходима для запасания веществ и энергии при подготовке к митозу.

2. В интерфазе происходит удвоение наследственного материала, что впоследствии обеспечивает его равномерное распределение по дочерним клеткам.

Ответьте самостоятельно

    Одинаковы или различны по своему генетическому составу гаметы, производимые организмом? Приведите доказательства.

    Какие организмы имеют эволюционное преимущество – гаплоидные или диплоидные? Приведите доказательства.

Задания уровня С2

Элементы правильного ответа

Ошибки допущены в предложениях 2, 3, 5.

В предложении 2 обратите внимание на один из элементов, не относящийся к макроэлементам.

В предложении 3 один из перечисленных элементов ошибочно отнесен к микроэлементам.

В предложении 5 ошибочно указан элемент, выполняющий названную функцию.

2. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых допущены ошибки, объясните их.

1. Белки – это нерегулярные биополимеры, мономерами которых являются нуклеотиды. 2. Остатки мономеров соединены между собой пептидными связями. 3. Последовательность мономеров, поддерживаемая этими связями, формирует первичную структуру белковой молекулы. 4. Следующая структура – вторичная, поддерживается слабыми гидрофобными химическими связями. 5. Третичная структура белка представляет собой скрученную молекулу в виде глобулы (шара). 6. Поддерживается такая структура водородными связями.

Элементы правильного ответа

Ошибки допущены в предложениях 1, 4, 6.

В предложении 1 неверно указаны мономеры белковой молекулы.

В предложении 4 неверно указаны химические связи, поддерживающие вторичную структуру белка.

В предложении 6 неверно указаны химические связи, поддерживающие третичную структуру белка.

Согласно современной теории литосферных плит вся литосфера узкими и активными зонами — глубинными разломами — разделена на отдельные блоки, перемещающиеся в пластичном слое верхней мантии относительно друг друга со скоростью 2-3 см в год. Эти блоки называются литосферными плитами.

Особенность литосферных плит — их жесткость и способность при отсутствии внешних воздействий длительное время сохранять неизменными форму и строение.

Литосферные плиты подвижны. Их перемещение по поверхности астеносферы происходит под влиянием конвективных течений в мантии. Отдельные литосферные плиты могут расходиться, сближаться или скользить друг относительно друга. В первом случае между плитами возникают зоны растяжения с трещинами вдоль границ плит, во втором — зоны сжатия, сопровождаемые надвиганием одной плиты на другую (надвигание — обдукция; поддвигание — субдукция), в третьем — сдвиговые зоны — разломы, вдоль которых происходит скольжение соседних плит.

В местах схождения континентальных плит происходит их столкновение, образуются горные пояса. Так возникла, например, на границе Евразийской и Индо-Австралийской плиты горная система Гималаи (рис. 1).

Рис. 1. Столкновение континентальных литосферных плит

При взаимодействии континентальной и океанической плит, плита с океанической земной корой пододвигается под плиту с континентальной земной корой (рис. 2).

Рис. 2. Столкновение континентальной и океанической литосферных плит

В результате столкновения континентальной и океанической литосферных плит образуются глубоководные желоба и островные дуги.

Расхождение литосферных плит и образование в результате этого земной коры океанического типа показано на рис. 3.

Для осевых зон срединно-океанических хребтов характерны рифты (от англ. rift - расщелина, трещина, разлом) — крупная линейная тектоническая структура земной коры протяженностью в сотни, тысячи, шириной в десятки, а иногда и сотни километров, образовавшаяся главным образом при горизонтальном растяжении коры (рис. 4). Очень крупные рифты называются рифтовыми поясами, зонами или системами.

Так как литосферная плита представляет собой единую пластину, то каждый ее разлом — это источник сейсмической активности и вулканизма. Эти источники сосредоточены в пределах сравнительно узких зон, вдоль которых происходят взаимные перемещения и трения смежных плит. Эти зоны получили название сейсмических поясов. Рифы, срединно-океанические хребты и глубоководные желоба являются подвижными областями Земли и располагаются на границах литосферных плит. Это свидетельствует о том, что процесс формирования земной коры в этих зонах в настоящее время происходит очень интенсивно.

Рис. 3. Расхождение литосферных плит в зоне среди нно-океанического хребта

Рис. 4. Схема образования рифта

Больше всего разломов литосферных плит на дне океанов, где земная кора тоньше, однако встречаются они и на суше. Наиболее крупный разлом на суше располагается на востоке Африки. Он протянулся на 4000 км. Ширина этого разлома — 80-120 км.

В настоящее время можно выделить семь наиболее крупных плит (рис. 5). Из них самая большая по площади — Тихоокеанская, которая целиком состоит из океанической литосферы. Как правило, к крупным относят и плиту Наска, которая в несколько раз меньше по размерам, чем каждая из семи самых крупных. При этом ученые предполагают, что на самом деле плита Наска гораздо большего размера, чем мы видим ее на карте (см. рис. 5), так как значительная часть ее ушла под соседние плиты. Эта плита также состоит только из океанической литосферы.

Рис. 5. Литосферные плиты Земли

Примером плиты, которая включает как материковую, так и океаническую литосферу, может служить, например, Индо-Авст- ралийская литосферная плита. Почти целиком состоит из материковой литосферы Аравийская плита.

Теория литосферных плит имеет важное значение. Прежде всего, она может объяснить, почему в одних местах Земли расположены горы, а в других — равнины. С помощью теории литосферных плит можно объяснить и спрогнозировать катастрофические явления, происходящие на границах плит.

Рис. 6. Очертания материков действительно представляются совместимыми

Теория дрейфа материков

Теория литосферных плит берет свое начало из теории дрейфа материков. Еще в XIX в. многие географы отмечали, что при взгляде на карту можно заметить, что берега Африки и Южной Америки при сближении кажутся совместимыми (рис. 6).

Появление гипотезы движения материков связывают с именем немецкого ученого Альфреда Вегенера (1880-1930) (рис. 7), который наиболее полно разработал эту идею.

Вегенер писал: «В 1910 г. мне впервые пришла в голову мысль о перемещении материков..., когда я поразился сходством очертаний берегов по обе стороны Атлантического океана». Он предположил, что в раннем палеозое на Земле существовали два крупных материка — Лавразия и Гондвана.

Лавразия — это был северный материк, который включал территории современной Европы, Азии без Индии и Северной Америки. Южный материк — Гондвана объединял современные территории Южной Америки, Африки, Антарктиды, Австралии и Индостана.

Между Гондваной и Лавразией находилось первое морс — Тетис, как огромный залив. Остальное пространство Земли было занято океаном Панталасса.

Около 200 млн лет назад Гондвана и Лавразия были объединены в единый континент — Пангею (Пан — всеобщий, Ге — земля) (рис. 8).

Рис. 8. Существование единого материка Пангеи (белое — суша, точки — неглубокое море)

Примерно 180 млн лет назад материк Пангея снова начал разделяться на составные части, которые перемешались но поверхности нашей планеты. Разделение происходило следующим образом: сначала вновь появились Лавразия и Гондвана, потом разделилась Лавразия, а затем раскололась и Гондвана. За счет раскола и расхождения частей Пангеи образовались океаны. Молодыми океанами можно считать Атлантический и Индийский; старым — Тихий. Северный Ледовитый океан обособился при увеличении суши в Северном полушарии.

Рис. 9. Расположение и направления дрейфа континентов в меловой период 180 млн лет назад

А. Вегенер нашел много подтверждений существованию единого материка Земли. Особенно убедительным показалось ему существование в Африке и в Южной Америке остатков древних животных — листозавров. Это были пресмыкающиеся, похожие на небольших гиппопотамов, обитавшие только в пресноводных водоемах. Значит, проплыть огромные расстояния по соленой морской воде они не могли. Аналогичные доказательства он нашел и в растительном мире.

Интерес к гипотезе движения материков в 30-е годы XX в. несколько снизился, но в 60-е годы возродился вновь, когда в результате исследований рельефа и геологии океанического дна были получены данные, свидетельствующие о процессах расширения (спрединга) океанической коры и «подныривания» одних частей коры под другие (субдукции).

Интересные научные доказательства известных фактов обо всем на свете. А начнем мы с факта о том, что при разговоре с женщиной мужчины всегда рассматривают женскую грудь, отвлекаясь от беседы. Но что самое интересное, научными методами было доказано, что женщины при разговоре с женщинами тоже больший процент внимания уделяют фигуре собеседницы, как потенциальную конкурентку в борьбе за мужское внимание.

Кошки игнорируют своих хозяев

Недавно сотрудники Токийского университета совершили «открытие», о котором давно знают все без исключения владельцы кошек: одомашненные представители семейства кошачьих распознают своих хозяев по голосу, но практически не реагируют на их команды.
Причина этого кроется в особенностях эволюционного развития: в отличие от собак, научившихся служить людям, домашние кошки сохранили свои охотничьи инстинкты, которые заставляют их не спешить реагировать на внешние раздражители и скрывать свои намерения.

Учащиеся, выполняющие домашние задания, получают более высокие отметки

Экономист Ник Рапп, по всей видимости, не слишком хорошо учился в школе, иначе ему не пришлось бы проводить свой эксперимент по изучению влияния домашних заданий на успеваемость.
Рапп разделил своих учеников на две группы: одни в течение некоторого времени не занимались заданными на дом упражнениями, а другие прилежно их решали. Результаты исследования вряд ли кого-то удивят - вторая группа учащихся лучше выполняла контрольные тесты и получала за них более высокие баллы, на основании чего исследователь сделал вывод, что «домашние задания играют важную роль в образовательном процессе». Кто бы мог подумать!

Мужчины пялятся на женскую грудь

В своей статье «My Eyes Up Here» (можно перевести как «Мои глаза вот здесь») Сара Жерве приводит поистине «сенсационные» данные, полученные ей в ходе одного из экспериментов: мужчина при разговоре с женщиной, как правило, больше разглядывает её фигуру, чем следит за лицом.
Используя технологию отслеживания движения глаз, Сара обнаружила, что чем привлекательнее пропорции женского тела, тем чаще «блуждает» по нему взгляд собеседника мужского пола. Женщины при разговоре друг с другом ведут себя примерно так же: они разглядывают фигуру собеседницы, оценивая её, как потенциальную конкурентку в борьбе за мужское внимание.

Высокие каблуки неудобны и вредны

Каблуки-шпильки зрительно увеличивают рост женщин и делают их походку более привлекательной, но все представительницы прекрасного пола знают, что ходьба на них может быть настоящей пыткой.
Вред от частого ношения обуви на высоких каблуках подтверждают исследования специалистов из американского Института изучения процессов старения: его сотрудники выяснили, что 64% пожилых женщин, жалующихся на боли в ногах, в течение нескольких лет подолгу ходили на высоких каблуках.
«Ценность» таких опросов просто ошеломляет: о негативных последствиях, связанных с туфлями на шпильках врачи твердят уже несколько десятилетий, кроме того, не нужно быть искушённым американским специалистом, чтобы понять: если от долгих прогулок в такой обуви болят ноги, вряд ли это значит, что она полезна.

Свиньи любят валяться в грязи

Всем известно, что свиньи часто устраивают себе «грязевые ванны». Учёные считают, что причиной этого послужило отсутствие потовых желёз, обеспечивающих эффективное охлаждение тела, и это действительно так, но есть любопытный нюанс.
Недавнее исследование, результаты которого опубликованы в журнале «Прикладная наука о поведении животных» («Applied Animal Behavior Science») выявило, что у современных свиней нет потовых желёз как раз потому, что их далёкие предки постоянно лежали в грязи и не нуждались в других способах терморегуляции.
Таким образом, изначально причиной послужило именно пристрастие свиней к «грязевым процедурам». Обязательно было тратить время, чтобы доказать, что свиньи валяются в грязи, потому что всегда любили это делать?

При прогулке с любой женщиной мужчина идёт медленнее, чем в одиночку

Сотрудники Тихоокеанского университета Сиэтла доказали, что мужчины подстраиваются под темп ходьбы любимой женщины, хотя всему остальному человечеству это и так ясно - тот, за которым «как за каменной стеной», привык шагать быстрее, но не хочет утруждать свою хрупкую «вторую половинку», заставляя её бежать, особенно если пассия на каблуках. К тому же, так прогулка становится длительнее и способствует более плодотворному общению.
Результаты эксперимента свидетельствуют примерно о том же: мужчины инстинктивно замедляются, чтобы сохранить энергию партнёрши и таким образом повысить её способность к зачатию детей.
Интересно, что компания мужчин передвигается несколько быстрее, чем её участники в среднем поодиночке, если же мужчина гуляет с девушкой-другом, то возникает компромисс - он немного замедляется, а она незначительно ускоряет шаг.

С молоком кукурузные хлопья вкуснее, чем с водой

Учёные из Папского Католического университета Чили обнаружили поразительное явление: оказывается, если добавить к кукурузным хлопьям воду, а не молоко, они не так вкусны, причём специалисты даже знают, почему это происходит.
Дело в том, что «в результате межмолекулярной реакции вода ослабляет структуру хлопьев, что приводит к растворению некоторых их компонентов и разрушению механической целостности», иначе говоря, хлопья впитывают воду и превращаются в вязкую мягкую кашу, поэтому есть их уже не так приятно. А жир, содержащийся в молоке, не даёт хлопьям впитывать большое количество влаги, поэтому они остаются хрустящими и вкусными.

Переедание приводит к набору веса

Согласно масштабным исследованиям американских врачей, с 1970-х годов средний вес взрослого жителя Соединённых Штатов увеличился примерно на 7,5 кг.
В 2009-м году на Европейском конгрессе по ожирению руководитель эксперимента Бойд Суинбёрн во всеуслышание заявил, что «растущий вес американских граждан можно объяснить повышенным потреблением калорий», предотвратив таким образом все возможные разночтения в этом вопросе.

Собрания отвлекают членов коллектива от работы

В 2005-м году американские учёные открыли «удивительную» закономерность: частые собрания и планёрки портят настроение сотрудников и не дают им спокойно работать.
Проанализировав дневниковые записи 37 университетских работников, эксперты обнаружили, что даже самые терпеливые и целеустремлённые из них считают бесконечные заседания пустой тратой времени, которое трудовой коллектив мог бы провести с большей пользой. Подтверждением этого служит тот факт, что из-за нудных собраний и «разборов полётов» даже у самых усердных трудящихся заметно снижается производительность.
Вместо исследования, кстати, американцы могли обратиться к своим российским коллегам - наши специалисты давно знают, чем опасны партсобрания и «вызовы на ковёр».

Чтение полезно для мозга

Помните, учителя в школе говорили, что если много читать, можно стать умнее? Наверняка вы не удивитесь, узнав, что это утверждение получило научное обоснование.
Группа экспертов с помощью магнитно-резонансной томографии изучила функционирование мозга нескольких добровольцев во время прочтения художественной и учебной литературы, при этом выяснилось, что в обоих случаях приток крови к головному мозгу усиливается, повышая эффективность его работы. Интересно, что чтение литературы разного типа стимулирует различные области мозга.
Руководитель эксперимента Натали Филлипс подытожила полученный результат: «Чтение является замечательным упражнением для мозга», на что так и хочется сказать: «Спасибо, Кэп».

Учащиеся неблагополучных школ чаще пьют спиртное

Команда исследователей из Гарвардской школы общественного здравоохранения потратила на этот уникальный эксперимент целых 14 лет, но результат того стоит: ведь они узнали, что в учебных заведениях, «славящихся» многочисленными вечеринками и попойками школьников и студентов, подростки действительно пьют больше.
Специалисты опросили более 50-ти тысяч учащихся 120-ти различных школ и колледжей и оказалось, что, несмотря на обновляющийся с каждым годом состав классов, количество злоупотребляющих алкоголем тинэйджеров остаётся в них практически неизменным.

Интернет-сёрфинг убивает время

Сеть Интернет лишь инструмент для достижения целей, но если вы провели там хоть сколько-нибудь времени, то знаете - люди чаще используют его отнюдь не для написания докторских диссертаций или ознакомления с бесценным культурным наследием человечества: большая часть пользователей видит в нём способ занять время или выплеснуть негативную энергию.
Сотрудники американской исследовательской организации «Pew Research Center» выявили, что примерно 53% людей в возрасте от 18-ти до 29-ти лет хотя бы раз в день выходят в интернет без определённой цели, а среди интернет-пользователей старшего поколения таких насчитывается около двух третей.


Вконтакте

Длительное время в геологической науке господствовала гипотеза о неизменном положении континентов и океанов. Было принято считать, что те и другие возникли сотни миллионов лет назад и никогда не меняли своего положения. Лишь изредка, когда высота континентов существенно снижалась, а уровень Мирового океана повышался, море наступало на низменности и затапливало их.

Среди геологов утвердилось мнение, что земная кора испытывает только медленное вертикальное перемещение и благодаря этому создается наземный и подводный рельеф.

С мыслью, что «земная твердь» находится в беспрестанном вертикальном движении, за счет которого формируется рельеф Земли, абсолютное большинство геологов согласилось давно. Часто эти движения имеют большую амплитуду и скорость и приводят к крупным катастрофам, например землетрясениям. Однако имеются еще и очень медленные, не ощутимые даже самыми чувствительными приборами вертикальные движения с переменным знаком. Это так называемые колебательные движения. Только за очень продолжительный промежуток времени обнаруживается, что горные вершины выросли на несколько сантиметров, а речные долины углубились.

В конце XIX - начале XX в. некоторые естествоиспытатели усомнились в справедливости этих предположений и стали осторожно высказывать идеи о единстве материков в геологическом прошлом, в настоящее время разделенных обширными океанами. Эти ученые, как и многие люди прогрессивных взглядов, оказались в затруднительном положении, поскольку их предположение было бездоказательно. Действительно, если вертикальные колебания земной коры можно было объяснил, какими-то внутренними силами (например, воздействием тепла Земли), то перемещение громадных континентов по земной поверхности сложно было представить.

ГИПОТЕЗА ВЕГЕНЕРА

В начале XX в. большую популярность среди естествоиспытателей, благодаря трудам немецкого геофизика А. Вегенера, получила идея перемещения материков. Он провел многие годы в экспедициях и в ноябре 1930 г. (точная дата неизвестна) погиб на ледниках Гренландии. Научный мир был потрясен известием о гибели А. Вегенера, находившегося в расцвете творческих сил. К этому времени достигла зенита популярность его идеи о дрейфе материков. Многие геологи и геофизики, палеогеографы и биогеографы с интересом восприняли их, стали появляться талантливые работы, в которых развивались эти идеи.

А. Вегенеру пришла мысль о возможном перемещении материков, когда он внимательно рассматривал географическую карту мира. Его поразило удивительное сходство очертаний берегов Южной Америки и Африки. Позднее, А. Вегенер познакомился с палеонтологическими материалами, свидетельствующими о существовании некогда сухопутных связей между Бразилией и Африкой. В свою очередь, это послужило толчком к проведению более детального анализа имеющихся геологических и палеонтологических данных и привело к твердому убеждению о правильности его предположения.

Преодолеть господство хорошо разработанной концепции о неизменности положения материков, или гипотезы фиксизма, остроумным, по чисто умозрительным предположением мобилистов, основанным пока только па сходстве конфигураций противоположных берегов Атлантического океана, в первое время было сложно. А. Вегенер считал, что он сможет убедить всех своих оппонентов в справедливости дрейфа материков лишь тогда, когда будут собраны веские доказательства, основанные на обширном геологическом и палеонтологическом материалах.

Для подтверждения дрейфа материков А. Вегенер и его сторонники приводили четыре группы независимых доказательств: геоморфологические, геологические, палеонтологические и палеоклиматические. Итак, все началось с определенного сходства береговых линий материков, расположенных по обе стороны от Атлантического океана, менее четкое совпадение имеют очертания береговых линий материки, окружающие Индийский океан. А. Вегенер предположил, что около 250 млн. лет назад все материки были сгруппированы в единый гигантский суперматерик - Пангею. Этот суперматерик состоял из двух частей. На севере располагалась Лавразия, которая объединяла Евразию (без Индии) и Северную Америку, а на юге - Гондвана, представленная Южной Америкой, Африкой, Индостаном, Австралией и Антарктидой.

Реконструкция Пангеи была основана главным образом на геоморфологических данных. Они полностью подтверждаются сходством геологических разрезов отдельных материков и ареалами развития определенных типов животного и растительного царств. Вся древняя флора и фауна южных гондванских материков образует единое сообщество. Многие наземные и пресноводные позвоночные, а также мелководные беспозвоночные формы, не способные активно перемещаться на большие расстояния и жившие как будто бы на разных материках, оказались удивительно близкими и похожими друг на друга. Трудно представить, каким образом могла расселиться древняя флора, если бы материки были отдалены один от другого на такое же огромное расстояние как в настоящее время.

Убедительные доказательства в пользу существования Пангеи, Гондваны и Лавразии получены А. Вегенером после обобщения палеоклиматических данных. В то время уже было хорошо известно, что почти на всех южных материках обнаружены следы крупнейшего покровного оледенения, которое произошло около 280 млн. лет назад. Ледниковые образования в виде фрагментов древних морен (их называют тиллитами), остатков форм ледникового рельефа и следов движения ледника известны в Южной Америке (Бразилия, Аргентина), Южной Африке, Индии, Австралии и Антарктиде. Трудно представить, как при современном положении материков могло возникнуть оледенение почти одновременно в столь удаленных друг от друга районах. Кроме того, большинство из перечисленных районов оледенения располагаются и настоящее время в экваториальных широтах.

Противники гипотезы дрейфа материков выставляли следующие аргументы. По их мнению, хотя все эти континенты в прошлом располагались в экваториальных и тропических широтах, они находились на значительно более высоком, чем в настоящее время, гипсометрическом положении, что обусловило появление в их пределах льда и снега. Ведь сейчас на горе Килиманджаро имеется многолетний снег и лед. Однако маловероятно, чтобы общая высота материков в то далекое время составляла 3500-4000 м. Для этого предположения нет никаких оснований, так как в этом случае материки подвергались бы интенсивному размыву и на их обрамлении должны были скопиться толщи грубообломочного материала, подобные накоплениям в конечных бассейнах стока горных рек. В действительности же на шельфе материков отлагались лишь тонкозернистые и хемогенные осадки.

Поэтому наиболее приемлемое объяснение этому уникальному явлению, т. е. нахождению в современной экваториальной и тропической областях Земли древних морен, состоит в том, что 260 - 280 млн. лет назад материк Гондвана, состоящий из собранных воедино Южной Америки, Индии, Африки, Австралии и Антарктиды, находился в высоких широтах, вблизи Южного географического полюса.

Противники гипотезы дрейфа не могли представить, каким образом материки перемещались на столь большие расстояния. А. Вегенер объяснял это на примере движения айсбергов, которое осуществлялось под влиянием центробежных сил, обусловленных вращением планеты.

Благодаря простоте и наглядности и, главное, убедительности приводимых в защиту гипотезы дрейфа материков фактов, она довольно быстро стала популярной. Однако вслед за успехом довольно скоро наступил кризис. Начало критическому отношению к гипотезе положили геофизики. Они получили большое число фактов и физических противоречий в цепи логических доказательств перемещения материков. Это им позволило доказывать неубедительность способа и причин дрейфа материков, и к началу 40-х годов эта гипотеза растеряла почти всех своих сторонников. К 50-м годам XX в. большинству геологов казалось, что гипотеза дрейфа материков должна быть окончательно оставлена и может рассматриваться лишь как один из исторических парадоксов науки, не получивших подтверждения и не выдержавший проверку временем.

ПАЛЕОМАГНЕТИЗМ И НЕОМОБИЛИЗМ

С середины XX в. ученые приступили к интенсивному исследованию рельефа и геологии океанического дна его глубинных недр, а также физики, химии и биологии океанических вод. Морское дно стали прощупывать многочисленными приборами. Расшифровывая записи сейсмографов и магнитометров, геофизики получали новые факты. Было установлено, что многие горные породы в процессе своего образования приобретали намагниченность по направлению существующего геомагнитного полюса. В большинстве случаев эта остаточная намагниченность остается без изменения многие миллионы лет.

В настоящее время уже хорошо разработаны методики отбора образцов и определения их намагниченности на специальных приборах - магнитометрах. Определяя направление намагниченности горных пород различного возраста, можно узнать, как менялось в каждом, конкретно взятом районе направление геомагнитного поля за тот или иной промежуток времени.

Изучение остаточной намагниченности горных пород привело к двум фундаментальным открытиям. Во-первых, установлено, что в течение длительной истории Земли намагниченность менялась многократно - от нормальной, т. е. соответствующей современной, до обратной. Это открытие было подтверждено в начале 60-х годов нашего столетия. Оказалось, что ориентация намагниченности четко зависит от времени и на основании этого были построены шкалы обращений магнитного поля.

Во-вторых, при изучении колонок лав, залегающих по обе стороны от срединно-океанических хребтов, обнаружена определенная симметрия. Это явление получило название полосовой магнитной аномалии. Такие аномалии симметрично располагаются по обе стороны от срединно-океанического хребта, и каждая их симметричная пара имеет один и тот же возраст. Причем последний закономерно увеличивается по мере удаления от оси срединно-океанического хребта в сторону материков. Полосовые магнитные аномалии представляют собой как бы запись инверсий, т. е. изменений направления магнитного поля на гигантской «магнитной ленте».

Американский ученый Г. Хесс высказал предположение, многократно подтвержденное впоследствии, что частично расплавленное мантийное вещество поднимается на поверхность по трещинам и через рифтовые долины, расположенные в осевой части срединно-океанического хребта. Оно растекается в разные стороны от оси хребта и при этом как бы растаскивает, раскрывает океаническое дно. Мантийное вещество постепенно заполняет рифтовую трещину, застывает в ней, намагничивается исходя из существующей магнитной полярности, а затем, разрываясь примерно посередине, отодвигается новой порцией расплава. На основании времени инверсии и порядка чередования прямой и обратной намагниченности определяется возраст океанов и расшифровывается история их развития.

Полосовые магнитные аномалии океанического дна оказались наиболее удобной информацией для восстановления эпох полярности геомагнитного поля в геологическом прошлом. Но имеется еще очень важное направление изучения магматических пород. Основываясь на остаточной намагниченности древних пород, удается определить направление палеомеридианов, а следовательно, и координаты Северного и Южного полюсов в ту или иную геологическую эпоху.

Первые определения положения древних полюсов показали, что чем древнее исследуемая эпоха, тем сильнее отличается местонахождение магнитного полюса от современного. Однако главное заключается в том, что координаты полюсов, определенные по одновозрастным горным породам, для каждого в отдельности континента одинаковые, а для разных континентов имеют расхождение, которое увеличивается по мере углубления в далекое прошлое.

Одним из феноменов палеомагнитных исследований была несовместимость положения магнитных древних и современных полюсов. При попытке совместить их каждый раз требовалось передвигать континенты. Примечательно, что при совмещении позднепалеозойских и раннемезозойских магнитных полюсов с современными континенты сдвигались в единый огромный материк, очень похожий на Пангею.

Столь ошеломляющие результаты палеомагнитных исследований способствовали возвращению к гипотезе о дрейфе материков со стороны широких научных кругов. Английский геофизик Е. Буллард и его коллеги решили проверить исходную предпосылку дрейфа материков - сходство контуров материковых глыб, разобщенных в настоящее время Атлантическим океаном. Совмещение проводилось с помощью электронно-вычислительных машин, но уже не по контуру береговых линий, как это делал А. Вегенер, а по изобате 1800 м, которая проходит примерно посередине континентального склона. Контуры материков, расположенные по обоим краям Атлантики, на значительном протяжении совпали.

ТЕКТОНИКА ЛИТОСФЕРНЫХ ПЛИТ

Открытия первичной намагниченности, полюсов магнитных аномалий с переменным знаком, симметричных осям срединно-океанических хребтов, изменение положения магнитных полюсов со временем и целый ряд других открытий привели к возрождению гипотезы дрейфа материков.

Представление о расширении дна океанов от осей срединно-океанических хребтов к периферии получило многократное подтверждение, особенно после глубоководного бурения. Большой вклад в развитие идей мобилизма (дрейфа материков) внесли сейсмологи. Их исследования позволили уточнить картину распределения зон сейсмической активности на земной поверхности. Оказалось, что эти зоны довольно узкие, но протяженные. Они приурочены к окраинам материков, островным дугам, а также к срединно-океаническим хребтам.

Возрожденная гипотеза дрейфа материков получила название тектоники литосферных плит. Эти плиты медленно перемещаются по поверхности нашей планеты. Их толщина иногда достигает 100-120 км, но чаще составляет 80-90 км. Литосферных плит на Земле немного (рис. 1) - восемь крупных и около полутора десятков мелких. Последние часто называют микроплитами. Две крупные плиты расположены в пределах Тихого океана и представлены тонкой и легко проницаемой океанической корой. Антарктическая, Индо-Австралийская, Африканская, Северо-Американская, Южно-Американская и Евразийская литосферные плиты обладают корой континентального типа. Они имеют различные края (границы). В тех случаях, когда плиты расходятся, их края называют дивергентными. Поскольку они расходятся, в образующуюся трещину (рифтовую зону) поступает мантийное вещество. Оно застывает на поверхности дна и наращивает океаническую кору. Новые порции мантийного вещества расширяют рифтовую зону, что заставляет двигаться литосферные плиты. На месте их раздвига образуется океан, размеры которого все время увеличиваются. Этот тип границ фиксируется современными океаническими рифтовыми трещинами вдоль осей срединно-океанических хребтов.

Рис. 1. Современные литосферные плиты Земли и направление их движения.

1 - оси раздвижения и разломы; 2 - планетарные пояса сжатия; 3 - конвергентные границы плит; 4 - современные континенты

Когда литосферные плиты сходятся, их границы носят название конвергентных. В зоне сближения происходят сложные процессы. Можно выделить два главных. В случае, когда океаническая плита сталкивается с другой океанической или континентальной, она погружается в мантию. Процесс этот сопровождается короблением и разламыванием. В зоне погружения возникают глубокофокусные землетрясения. Именно в этих местах располагаются зоны Заварицкого - Беньоффа.

Океаническая плита поступает в мантию и там частично переплавляется. При этом наиболее легкие ее компоненты, расплавляясь, вновь поднимаются на поверхность в виде вулканических извержений. Именно такую природу имеет Тихоокеанское огненное кольцо. Тяжелые компоненты медленно погружаются в мантию и могут опускаться вплоть до границ ядра.

В случае, когда сталкиваются две континентальные литосферные плиты, возникает эффект типа торошения.

Его мы многократно наблюдаем во время ледохода, при этом льдины сталкиваются и раздрабливаются, надвигаясь друг на друга. Земная кора континентов значительно легче, чем мантия, поэтому плиты не погружаются в мантию. При столкновении они сжимаются и на их краях возникают крупные горные сооружения.

Многочисленные и многолетние наблюдения позволили геофизикам установить средние скорости перемещения литосферных плит. В пределах Альпийско-Гималайского пояса сжатия, который образовался в результате столкновения Африканской и Индостанской плит с Евразийскои, скорости сближения составляют от 0,5 см/год в районе Гибралтара до 6 см/год в районах Памира и Гималаев.

В настоящее время Европа «отплывает» от Северной Америки со скоростью до 5 см/год. Однако Австралия «уходит» от Антарктиды с максимальной скоростью - в среднем 14 см/год.

Наиболее высокими скоростями перемещения обладают океанические литосферные плиты - их скорость в 3-7 раз выше скорости континентальных литосферных плит. Самой «быстрой» является Тихоокеанская плита, а самой «медленной» - Евразийская.

МЕХАНИЗМ ПЕРЕМЕЩЕНИЯ ЛИТОСФЕРНЫХ ПЛИТ

Сложно вообразить, что обширные и массивные материки могут медленно перемещаться. Еще труднее ответить на вопрос, почему они перемещаются? Земная кора представляет охлажденную и полностью раскристаллизованную массу. Снизу она подстилается частично расплавленной астеносферой. Легко предположить, что литосферные плиты возникли при остывании частично расплавленного вещества астеносферы аналогично процессу образования льда в водоемах в зимний период. Однако разница заключается в том, что лед легче воды, а раскристаллизованные силикаты литосферы тяжелее своего расплава.

Каким же образом формируются океанические литосферные плиты?

В пространство между ними поднимается горячее и частично расплавленное вещество астеносферы, которое, попадая на поверхность океанического дна, охлаждается и, кристаллизуясь, превращается в породы литосферы (рис. 2). Образовавшиеся ранее участки литосферы как бы «промерзают» еще сильнее и раскалываются трещинами. Новая порция горячего вещества поступает в эти трещины и, застывая, увеличиваясь в объеме, раздвигает их. Процесс многократно повторяется.

Рис. 2. Схема движения жестких литосферных плит (по Б. Айзексу и др.)

Породы литосферы тяжелее подстилающего горячего вещества астеносферы и, следовательно, чем она толще, тем глубже опускается, или проседает, в мантию. Почему же литосферные плиты, если они тяжелее вещества расплавленной мантии, не тонут в ней? Ответ довольно прост. Они не тонут потому, что к тяжелой мантийной части континентальных плит сверху «припаяна» легкая земная кора, выполняющая роль поплавка. Поэтому средняя плотность пород континентальных плит всегда меньше средней плотности горячего вещества мантии.

Океанические же плиты тяжелее мантии, и поэтому они рано или поздно погружаются в мантию и тонут под более легкими континентальными плитами.

Довольно длительное время океаническая литосфера, подобно гигантским «расплющенным блюдцам», удерживается на поверхности. В соответствии с законом Архимеда масса вытесненной из-под них астеносферы равна массе самих плит и заполняющих литосферные понижения воды. Возникает существующая длительное время плавучесть. Однако долго так продолжаться не может. Целостность «блюдца» временами нарушается в местах возникновения избыточных напряжений, причем они тем сильнее,чем глубже погружаются плиты в мантию, а следовательно, чем они древнее. Вероятно, в литосферных плитах, имевших возраст древнее 150 млн. лет, возникали напряжения, намного превышающие предел прочности самой литосферы, они раскалывались и погружались в горячую мантию.

ГЛОБАЛЬНЫЕ РЕКОНСТРУКЦИИ

На основании изучения остаточной намагниченности горных пород континентов и океанического дна устанавливаются положение полюсов и широтная зональность в геологическом прошлом. Палеошироты, как правило, не совпадают с современными географическими широтами, и эта разница все сильнее увеличивается по мере удаления от настоящего времени.

Совокупное использование геофизических (палеомагнитных и сейсмических), геологических, палеогеографических и палеоклиматических данных позволяет осуществить реконструкции положения материков и океанов для различных отрезков времени геологического прошлого. В этих исследованиях принимают участие многие специалисты: геологи, палеонтологи, палеоклиматологи, геофизики, а также специалисты по вычислительной технике, поскольку не сами расчеты векторов остаточной намагниченности, а интерпретация их немыслима без применения ЭВМ. Реконструкции осуществлялись независимо друг от друга советскими, канадскими и американскими учеными.

На протяжении почти всего палеозоя южные материки были объединены в единый огромный континент Гондвану. Нет никаких достоверных свидетельств существования в палеозое Южной Атлантики и Индийского океана.

В начале кембрийского периода, примерно 550 – 540 млн. лет назад, наиболее крупным материком являлась Гондвана. Ей противостояли в северном полушарии разобщенные материки (Северо-Американский, Восточно-Европейский и Сибирский), а также небольшое число микроконтинентов. Между Сибирским и Восточно-Европейским континентами, с одной стороны, и Гондваной, с другой, располагался Палеоазиатский океан, а между Северо-Американским материком и Гондваной находился палео-Атлантический океан. Кроме них, в то далекое время существовало обширное океаническое пространство - аналог современного Тихого океана. Конец ордовика, около 450 - 480 млн. лет назад, характеризовался сближением континентов в северном полушарии. Их столкновения с островными дугами приводили к наращиванию окраинных частей Сибирской и Северо-Американской суши. Палеоазиатский и палео-Атлантический океаны начинают сокращаться в размерах. Через некоторое время на этом месте возникает новый океан - Палеотетис. Он занимал территорию современной Южной Монголии, Тянь-Шаня, Кавказа, Турции, Балкан. Новый водный бассейн возник и на месте современного Уральского хребта. Ширина Уральского океана превышала 1500 км. Согласно палеомагнитным определениям, Южный полюс в это время находился в северо-западной части Африки.

В первой половине девонского периода, 370 - 390 млн. лет назад, материки начинали объединяться: Северо-Американский с Западной Европой, в результате чего возник, правда не надолго, новый материк - Еврамерика. Современные горные сооружения Аппалачей и Скандинавии образовались за счет столкновения этих континентов. Палеотетис несколько сократился в размерах. На месте Уральского и Палеоазиатского океанов сохранялись небольшие реликтовые бассейны. Южный полюс находился в районе нынешней Аргентины.

Значительная часть Северной Америки располагалась в южном полушарии. В тропических и экваториальных широтах находились Сибирский, Китайский, Австралийский континенты и восточная часть Еврамерики.

Ранний карбон, примерно 320-340 млн. лет назад, характеризовался продолжающимся сближением континентов (рис. 3). В местах их столкновения возникли складчатые области и горные сооружения - Урал, Тянь-Шань, горные массивы Южной Монголии и Западного Китая, Салаир и др. Возникает новый океан Палеотетис II (Палеотетис второй генерации). Он отделял Китайский континент от Сибирского и Казахстанского.

Рис.3. Положение материков в раннем карбоне (340 млн. лет назад)

В середине каменноугольного периода значительная часть Гондваны оказалась в полярном районе южного полушария, что привело к одному из величайших в истории Земли оледенений.

Поздний карбон - начало пермского периода 290 - 270 млн. лет назад, ознаменовался объединением материков в гигантскую континентальную глыбу - суперматерик Пангею (рис. 4). Он состоял из Гондваны на юге и Лавразии на севере. Лишь Китайский континент отделялся океаном Палеотетис II от Пангеи.

Во второй половине триасового периода, 200 - 220 млн. лет назад, хотя расположение континентов было примерно таким же, как и в конце палеозоя, тем не менее произошли изменения в очертаниях континентов и океанов (рис. 5). Китайский континент соединился с Евразией, прекратил существование Палеотетис II.

Однако почти одновременно возник и начал усиленно расширяться новый океанический бассейн - Тетис. Он отделил Гондвану от Евразии. Внутри его сохранились изолированные микроконтиненты - Индокитайский Иранский, Родопский, Закавказский и др.

Возникновение нового океана было обусловлено дальнейшим развитием литосферы - распадом Пангеи и разделением всех известных в настоящее время материков. В начале раскололась Лавразия - в районе со временного Атлантического и Северного Ледовитого океанов. Затем отдельные ее части стали отодвигаться друг от друга и тем самым освободили место для Северной Атлантики.

Позднеюрская эпоха, около 140 - 160 млн. лет назад, - это время дробления Гондваны (рис. 6). На месте раскола возникли Атлантический океанический бассейн и срединно-океанические хребты. Продолжал развиваться океан Тетис, на севере которого располагалась система островных дуг. Они находились на месте современного Малого Кавказа, Эльбурса и гор Афганистана и отделяли от океана окраинные моря.

В течение позднеюрского и мелового времени осуществлялось перемещение континентов в широтном направлении. Возникли Лабрадорское море и Бискайский залив, Индостан и Мадагаскар отделились от Африки. Между Африкой и Мадагаскаром появился пролив. Длительное путешествие Индостанской плиты завершилось в конце палеогена столкновением с Азией. Здесь и образовались гигантские горные сооружения - Гималаи.

Океан Тетис начинал последовательно сокращаться и замыкаться, главным образом за счет сближения Африки и Евразии. На его северной окраине возникала цепь вулканических островных дуг. Аналогичный вулкапический пояс сформировался и на восточной окраине Азии. В конце мелового периода Северная Америка и Евразия соединились в районе Чукотки и Аляски.

В течение кайнозоя полностью замкнулся океан Тетис, реликтом которого сейчас является Средиземное море. Столкновение Африки с Европой привело к образованию Альпийско-Кавказской горной системы. Континенты начали постепенно сходиться в северном полушарии и расходиться в стороны в южном, распадаясь на отдельные изолированные блоки и массивы.

Сравнивая положения континентов в отдельные геологические периоды, мы приходим к мысли, что в развитии Земли существовали крупные циклы, на протяжении которых материки то сходились воедино, то расходились в разные стороны. Продолжительность каждого такого цикла составляет не менее 600 млн. лет. Есть основания считать, что образование Пангеи и ее распад не были единичными моментами в истории нашей планеты. Подобный супергигантский материк возник и в глубокой древности примерно 1 млрд. лет назад.

ГЕОСИНКЛИНАЛИ - СКЛАДЧАТЫЕ ГОРНЫЕ СИСТЕМЫ

В горах мы восхищаемся открывающейся красочной панорамой, поражаемся безграничными созидательными и разрушительными силами природы. Величественно стоят седые горные вершины, огромные ледники языками спускаются в долины, в глубоких каньонах бурлят горные реки. Нас удивляют не только дикая красота горных областей, но и те факты, о которых мы слышим от геологов, а они утверждают, что на месте обширных горных сооружений в далеком прошлом находились необозримые морские просторы.

Когда Леонардо да Винчи обнаружил высоко в горах остатки раковин морских моллюсков, он сделал правильный вывод о существовании там в древности моря, но ему тогда мало кто поверил. Каким же образом в горах на высоте 2-3 тыс. м могло оказаться море? Не одно поколение ученых-естествоиспытателей приложило большие усилия для того, чтобы доказать вероятность такого, казалось бы, небывалого случая.

Великий итальянец был прав. Поверхность нашей планеты все время находится в движении - горизонтальном или вертикальном. При ее опускании неоднократно случались грандиозные трансгрессии, когда свыше 40% современной поверхности суши покрывалось морем. При восходящем движении земной коры высота материков увеличивалась и море отступало. Происходила так называемая регрессия моря. Но каким же образом образовались грандиозные горные сооружения и обширные горные массивы?

Длительное время в геологии господствовали идеи преобладании вертикальных движений. В связи с этим существовало мнение, что благодаря таким движениям и образовались горы. Большинство горных сооружений земного шара сосредоточено в определенных поясах протяженностью в тысячи километров и шриной в несколько десятков или даже первых сотен километров. Для них характерны интенсивная складчатость, проявления разнообразных разрывов, интрузий магматических пород, даек, секущих толщи осадочных и метаморфических пород. Непрерывное медленное воздымание, сопровождающееся эрозионными процессами, формируют рельеф горных сооружений.

Горные области Аппалачей, Кордильер, Урала, Алтая, Тянь-Шаня, Гиндукуша, Памира, Гималаев, Альп, Кавказа - это складчатые системы, которые образовать в различные периоды геологического прошлого в эпохи тектонической и магматической активности. Для этих горных систем типична огромная мощность накопившихся осадочных образований, часто превышающая 10 км, что в десятки раз больше мощности аналогичных пород в пределах равнинной, платформенной части.

Открытие необычайно мощных толщ осадочных пород, смятых в складки, пронизанных интрузиями и дайками магматических пород, к тому же имеющих большую протяженность при сравнительно небольшой ширине, привело к созданию в середине XIX в. геосинклинальной теории формирования гор. Протяженная область мощных осадочных толщ, со временем превращающаяся горную систему, получила название геосинклинали. В противоположность ей устойчивые участки земной коры большой мощностью осадочных пород называют платформами.

Почти все горные системы земного шара, обладающие складчатостью, разрывами и магматизмом, -это древние геосинклинали, расположенные на краях континентов. Несмотря на огромную мощность, абсолютное большинство осадков имеют мелководное происхождение. Нередко на поверхностях напластований встречаются отпечатки знаков ряби, остатки мелководных донных животных и даже трещины усыхания. Большая мощность отложений свидетельствует о значительном и при этом достаточно быстром погружении земной коры. Наряду с типично мелководными осадками встречаются и глубоководные (например, радиоляриты и тонкозернистые осадки со своебразной слоистостью и текстурами).

Геосинклинальные системы изучаются в течение целого столетия и благодаря трудам многих поколений ученых разработана, казалось бы, стройная система последовательности их возникновения и эволюции. Единственным необъяснимым фактом до сих пор остается отсутствие современного аналога геосинклинали. Что можно считать современной геосинклиналью? Окраинное море или весь океан?

Однако с развитием концепции тектоники литосферных плит геосинклинальная теория претерпела некоторые изменения и было найдено место геосинклинальных систем в периоды растяжения, перемещения и столкновения литоеферных плит.

Каким же образом происходило развитие складчатых систем? На тектонически активных окраинах континентов располагались протяженные области, испытывающие медленное погружение. В окраинных морях накапливались отложения мощностью от 6 до 20 км. Одновременно с ними здесь формировались вулканические образования в виде магматических интрузий, даек и лавовых покровов. Осадконакопление длилось десятки, а иногда даже и сотни миллионов лет.

Затем в орогенный этап происходили медленная деформация и преобразование геосинклинальной системы. Ее площадь сократилась, она как бы сплющилась. Возникли складки и разрывы, а также интрузии расплавленных магматических пород. В процессе деформации произошло смещение глубоководных и мелководных осадков и при высоких давлениях и температурах они подвергались метаморфизму.

В это время происходило воздымание, море полностью покидает территорию и образовались горные хребты массивы. Последующие процессы размыва горных пород, транспортировки и накопления обломочных осадков привели в конце концов к тому, что эти горы постепенно разрушались вплоть до отметок,близких к уровню моря. К такому же результату приводило и медленное погружение складчатых систем, находящихся на краях континентальной плиты.

В процессе формирования геосинклинальных систем принимают участие не только горизонтальные перемещения, но и вертикальные, осуществляемые главным образом в результате медленного движения литосферных плит. В случае, когда одна плита погружалась под другую, мощные осадки геосинклиналей в пределах окраинных морей, островных дуг и глубоководных желобов подвергались активному воздействию высоких температур и давления. Области погружения плиты носят название зон субдукции. Здесь породы опускаются в мантию, расплавляются и перерабатываются. Для этой зоны характерны сильнейшие землетрясения и вулканизм.

Там, где давление и температура были не столь высоки, происходило смятие горных пород в систему складок, а в местах наибольшей твердости пород их сплошность нарушалась разрывами и перемещениями отдельных блоков.

В областях сближения, а затем сталкивания континентальных литосферных плит ширина геосинклинальнои системы сильно уменьшалась. Одни части ее опускались глубоко в мантию, а другие, наоборот, надвигались на ближайшую плиту. Выжатые из глубины и смятые в складки осадочные и метаморфические образования многократно наслаиваясь друг на друга в виде гигантских чешуи, и в конце концов возникли горные массивы. Например, Гималаи образовались в результате столкновения двух больших литосферных плит - Индостанской и Евроазиатской. Горные системы южной Европы и Северной Африки, Крым, Кавказ, горные области Турции, Иран, Афганистан в основном сформировались в результате столкновения Африканской и Евроазиатской плит. Аналогичным образом, но в более древнее время возникли Уральские горы, Кордильеры, Аппалачи и другие горные области.

ИСТОРИЯ СРЕДИЗЕМНОГО МОРЯ

Моря и океаны формировались длительное время, пока не приобрели современный вид. Из истории развития морских бассейнов особый интерес представляет эволюция Средиземного моря. Вокруг него возникли первые цивилизованные государства, а история народов, населявших его побережье, хорошо известна. Но нам придется начать свое описание за много миллионов лет до появления здесь первого человека.

В глубокой древности, почти 200 млн. лет назад, на месте современного Средиземного моря существовал широкий и глубокий океан Тетис, Африка от Европы в то время отстояла на несколько тысяч километров. В океане находились крупные и мелкие архипелаги островов. Эти всем хорошо известные области, в настоящее время расположенные в Южной Европе, на Ближнем и Среднем Востоке - Иран, Турция, Синайский полуостров, Родопский, Апулийский, Татрский массивы, Южная Испания, Калабрия, Мезета, Канарские острова, Корсика, Сардиния, находились далеко к югу от современного их местоположения.

В мезозое между Африкой и Северной Америкой возник разлом. Он отделил от Африки Родопо-Турецкий массив и Иран, и по нему внедрялась базальтовая магма, формировалась океаническая литосфера и происходило раздвижение земной коры, или спрединг. Океан Тетис располагался в тропической области Земли и простирался от современного Атлантического океана через Индийский (последний составлял его часть) до Тихого. Максимальной широты Тетис достиг примерно 100- 120 млн. лет назад, а затем началось его последовательное сокращение. Медленно Африканская литосферная плита сближалась с Евроазиатской. Около 50 - 60 млн. лет назад от Африки отделилась Индия и начала свой беспримерный дрейф к северу, пока не столкнулась с Евразией. Размеры океана Тетис постепенно сокращались. Всего 20 млн. лет назад на месте обширного океана остались окраинные моря - Средиземное, Черное и Каспийское, размеры которых, однако, намного превышали современные. Не менее масштабные события происходили в последующее время.

В начале 70-х годов нашего столетия в Средиземном море под слоем рыхлых осадков мощностью в несколько сот метров были обнаружены эвапориты - разнообразные каменные соли, гипсы и ангидриты. Они образовались путем усиленного испарения воды около 6 млн. лет назад. Но неужели Средиземное море могло высохнуть? Именно такая гипотеза была высказана и поддерживается многими геологами. Предполагается, что 6 млн. лет назад Гибралтарский пролив закрылся и примерно через тысячу лет Средиземное море превратилось в огромную котловину глубиной 2 - 3 км с мелкими пересыхающими солеными озерами. Дно моря покрывалось слоем затвердевшего доломитового ила, гипса и каменной соли.

Геологи установили, что Гибралтарский пролив периодически открывался и вода через него из Атлантического океана попадала на дно Средиземного моря. При открытии Гибралтара атлантические воды низвергались в виде водопада, который по крайней мере в 15 - 20 раз превышал расход крупнейшего водопада Виктория на р. Замбези в Африке (200 км 3 /год). Закрытие и открытие Гибралтара происходило не менее 11 раз, и это обеспечило накопление толщи эвапоритов мощностью около 2 км.

В периоды осушения Средиземного моря на крутых склонах его глубокой котловины стекавшие с суши реки прорезывали протяженные и глубокие каньоны. Один из таких каньонов обнаружен и прослежен на расстоянии около 250 км от современной дельты р. Рона по материковому склону. Он заполнен очень молодыми, плиоценовыми осадками. Другим примером такого каньона является подводное продолжение р. Нила в виде заполненного осадками каньона, прослеженного на расстоянии 1200 км от дельты.

Во время потери связи Средиземного моря с открытым океаном на его месте располагался своеобразный сильно опресненный бассейн, остатками которого в настоящее время являются Черное и Каспийское моря, этот пресноводный, а временами и засолоненный бассейн простирался от Центральной Европы до Урала и Аральского моря и назван Паратетисом.

Зная положение полюсов и скорости современного перемещения литосферных плит, скорости раздвижения и поглощения океанического дна, можно наметить путь движения континентов в будущем и представить их положение на какой-то отрезок времени.

Такой прогноз был сделан американскими геологами Р. Дитцем и Дж. Холденом. Через 50 млн. лет, по их предположениям, Атлантический и Индийский океаны разрастутся за счет Тихого, Африка сместится на север и благодаря этому постепенно ликвидируется Средиземное море. Гибралтарский пролив исчезнет, а «повернувшаяся» Испания закроет Бискайский залив. Африка будет расколота великими африканскими разломами и восточная ее часть сместится на северо-восток. Красное море настолько расширится, что отделит Синайский полуостров от Африки, Аравия переместится на северо-восток и закроет Персидский залив. Индия все сильнее будет надвигаться на Азию, а значит, Гималайские горы будут расти. Калифорния по разлому Сан-Андреас отделится от Северной Америки, и на этом месте начнет формироваться новый океанический бассейн. Значительные изменения произойдут в южном полушарии. Австралия пересечет экватор и придет в соприкосновение с Евразией. Этот прогноз требует значительного уточнения. Многое здесь еще остается дискуссионным и неясным.

Из книги «Современная геология». Н.А. Ясаманов. М. Недра. 1987 г.

Похожие статьи