Презентация по физике распространение звука звуковые волны. Презентация на тему "Звуковые волны. Скорость звука" (9 класс). Процесс распространения звуковых волн

ученицы 9 класса МКОУ "Бабежская СОШ" Ступникова Ксения, Герасимова Яна, руководитель: Тетенькина Екатерина Владимировна

Данная презентация предназначена к уроку по теме "Звук, звуковые волны" для 9 класса. Содержит полезный, интересный материал. Большое количество красивых иллюстраций сделает урок увлекательным.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Звуковые волны выполнили: ученицы 9 класса МКОУ « Бабежская СОШ Ступникова Ксения, Герасимова Яна руководитель: учитель физики Тетенькина Екатерина Владимировна

Звук передаётся с помощью звуковых волн. Они распространяются от источника звука подобно кругам воды от брошенного камня

ЗВУКОВЫЕ ВОЛНЫ - механические колебания, частоты которых лежат в пределах звуковых частот. Звук распространяется во всех упругих телах – твёрдых, жидких и газообразных, но не может распространяться в безвоздушном пространстве.

Распространение звука в твёрдых телах. Лучше всего звук распространяется в твёрдых телах. 4500м/с. Так, приложив ухо к земле, вы можете услышать, что происходит далеко от вас. Распространение звука в газах. Звуковые волны способны проходить сквозь газы. Скорость звука в воздухе составляет 340 метров в секунду. Распространение звука в жидкостях. Звуковые волны в жидкостях всегда распространяются лучше, чем в газах(в 4 раза быстрее). Распространение звука в средах

Любой источник звука колеблется. Механические колебания, частота которых более 20 000Гц, называются ультразвуками, а колебания с частотами менее 20 Гц – инфразвуками. Человеческое ухо не слышит ультра- и инфразвуки, НО…

Эти звуки являются хорошими помощниками и человеку, и животным

Летучие мыши испускают высокочастотные писки-сигналы и воспринимают их эхо, то есть отражение этих сигналов от различных предметов. Чем короче промежуток времени между таким писком и эхом от него, тем ближе мыши к своей цели. Использование звука для обнаружения чего-либо называется эхолокацией

Летучие мыши могут различать самые высокие во всём животном мире звуковые колебания – до 210 000 Гц.

Киты и дельфины также используют принцип эхолокации, отыскивая свой путь в море. Воспринимая эхо звуков, они узнают, какие предметы и существа находятся вокруг них.

Не все животные слышат звуки так, как человек. Так, кузнечики слышат лапками, совершая ими быстрые колебания узнают, откуда исходит звук. У змей нет ушей, и они не могут воспринимать звуки через воздух. Но они улавливают звуки, слушая землю. Рыбы слышат всем своим телом.

Ультразвук применяется для обследования материалов. Например, чтобы произвести техосмотр самолёта. Изучая полученные с помощью эха данные, инженеры могут определить, нет ли в толщине металла трещин и разломов

Землетрясения и взрывы вызывают мощные колебания в почве. Такие колебания называются сейсмическими волнами. Эти волны проходят различные жидкости и горные породы с разными скоростями. Измеряя их скорость геологи могут узнать, что протисходит в недрах Земли. Сейсмические волны также помогают отыскивать месторождения нефти.

Интересные факты

Если слегка ударить по стеклянному стакану, то слышится звон стекла, вибрирующего собственной частотой. Стакан может расколоться, если рядом с ним громко пропеть эту ноту. Лишь звук, совпадающий с собственной частотой стекла, может создать достаточно сильную вибрацию, чтобы такое случилось. Как бьются стаканы

Каждое тело обладает собственной частотой. В 1940 г. Разрушился мост Тэйкома в США. Это случилось потому, что ветер заставил вибрировать с собственной частотой, явившейся причиной огромных разрушительных колебаний. Переходя по мосту, солдаты никогда не маршируют в ногу, так как это может вызвать колебания моста с собственной частотой Разрушение мостов

Можно играть на фортепьяно, даже не прикасаясь к его клавишам. Нужно открыть крышку фортепьяно, нажать на педаль и спеть какую-нибудь ноту. Кончив петь можно услышать, как из фортепьяно звучит эта же нота. Колебания голоса вызывают вибрацию струн инструмента. Синхронные колебания

В китайских и японских аптеках теперь можно найти музыкальные диски с весьма оригинальными названиями: «пищеварение», «мигрень», «печень» и т.д. Китайцы употребляют музыкальные произведения вместо таблеток. И хотя выпуск подобных музыкальных альбомов освоили на Востоке, целебные свойства музыки были известны ещё в Древнем Египте, просто эти знания со временем утратились. Медики изучили это явление и доказали: определённые мелодии оказывают благотворительное влияние на организм человека. В США музыкальная терапия стала одним из самых популярных способов лечения. Тебе помогут – при нарушениях сна: «Грустный вальс» Сибелиуса, «Мелодия» Глюка, пьесы Чайковского. От головной боли: «Венгерская рапсодия» Листа, « Фиделио » Бетховена. Снять стресс и успокоиться: «Колыбельная» Брамса, «Аве Мария» Шуберта, мазурки и прелюдии Шопена, «Лунная соната» Бетховена. От гипертонии концерт «ре-минор» для скрипки Баха. Этим методом терапии сегодня пользуется самые известные женщины мира.

В разных странах мира существуют целые ассоциации, популяризирующие и практикующие исцеление с помощью музыкальных вибраций. Этой теме посвящены многие издания и периодическая литература. В нашей стране музыкотерапия практикуется довольно давно, но не слишком широко. Однако применять лечение музыкой вы можете самостоятельно, в домашних условиях. Главное – наличие желания и уверенность в своих силах!

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Источники звука. Характеристики звука.

Звук – это воспринимаемые человеческими органами слуха механические волны, которые вызывают звуковые ощущения. Источниками звука могут быть любые тела, которые совершают колебания со звуковой частотой (от 16 до 20000 Гц).

Звуковая волна является продольной волной, поэтому может распространяться в твердых, жидких и газообразных средах.

Дети Человек в возрасте 20 лет Человек в возрасте 35 лет Человек в возрасте 50 лет Гц 16-22000 16-20000 16-15000 16-12000 Сверчок Кузнечик Лягушка Дельфин Гц 2-4000 10-100000 50-30000 400-200000 Диапазон слышимых звуков.

Инфразвук человек не воспринимает, хотя может ощущать его воздействие вследствие резонанса. Частота колебаний инфразвука меньше 16 в секунду, т. е. ниже порога слышимости.

Понятие об ультразвуке Ультразвук - высокочастотные механические колебания частиц твердой, жидкой или газообразной среды, неслышимые человеческим ухом. Частота колебаний ультразвука выше 20 000 в секунду, т. е. выше порога слышимости.

Ультразвук и инфразвук Ультразвук и инфразвук распространены в природе так же широко, как и волны звукового диапазона. Их излучают и используют для своих «переговоров» дельфины, летучие мыши и некоторые другие существа.

Источники звука Естественные (журчание ручья, птичьи голоса, легкий плеск воды) Искусственные (камертон, струна, колокол, мембрана и др.)

Для существования звука необходимы: 1. Источник звука 2. Среда 3. Слуховой аппарат 4. Частота 16–20000 Гц 5. Интенсивность

: Приемники звуковых волн: Естественный – ухо. Чувствительность его зависит от частоты звуковой волны: чем меньше частота волны, тем меньше чувствительность уха. Исключительная избирательность: дирижер улавливает звуки отдельных инструментов. Искусственный – микрофон. Он преобразует механические звуковые колебания в электрические.

Распространение звука Звук распространяется в любой упругой среде – твердой, жидкой и газообразной, но не может распространяться в пространстве, где нет вещества (например, в вакууме) .

Из истории открытия скорости звука. Скорость звука в воздухе впервые была определена в 1708 году английским ученым Уильямом Деремом. В двух пунктах, расстояние между которыми было известно, стреляли из пушек. В обоих пунктах измеряли промежутки времени между появлением огня при выстреле и моментом, когда слышался звук выстрела. Скорость звука в воздухе 340 м/с

Физические характеристики звука Объективные: - звуковое давление (давление, оказываемое звуковой волной на стоящее перед ней препятствие); - спектр звука – разложение сложной звуковой волны на составляющие ее частоты; - интенсивность звуковой волны.

Субъективные: - Громкость - Высота - Тембр

Высота звука – характеристика, которая определяется частотой колебаний. Чем больше частота у тела, которое производит колебания, тем звук будет выше. Тембром называется окраска звука. Тембр – это то, чем отличаются два одинаковых звука, исполненные различными музыкальными инструментами. Громкость звука зависит от амплитуды колебаний.

Громкость звука Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Громкость звука – это субъективное качество слухового ощущения, позволяющее располагать звуки по шкале от тихих до громких. Единица громкости звука называется сон.

Тембр. Качество музыкального звука, его своеобразная «окраска» характеризуется тембром. Вот некоторые характеристики тембра: густой, глубокий, мужественный, суровый, бархатистый, матовый, блестящий, легкий, тяжелый, насыщенный. Тембр зависит от материала, из которого изготовлен инструмент, от формы инструмента.

Звуковые колебания, происходящие по гармоническому закону, воспринимаются человеком как музыкальный звук, или тон.

Чистый тон Ветви камертона совершают гармонические (синусоидальные) колебания. Таким колебаниям присуща только одна строго определенная частота. Гармонические колебания являются самым простым видом колебаний. Звук камертона является чистым тоном. Чистым тоном называется звук источника, совершающего гармонические колебания одной частоты

Шум – это громкие звуки разных частот, слившиеся в нестройное звучание.

Больше читайте физику и счастье улыбнется вам!


Слайд 2

Звук (или звуковые волны) - это распространяющиеся в виде волн колебательные движения частиц упругой среды: газообразной, жидкой или твердой.

Почему же возникают звуковые волны? Это происходит из-за попеременного сжатия и растяжения среды, то есть из-за того, что в среде возникают возмущения (механические колебания среды). И эти возмущения передаются от одних частей среды другим. Таким образом, из-за периодической деформации среды и действия в ней силы упругости, в среде возникают упругие механические волны, которые мы зрительно не видим, зато воспринимаем на слух.

Слайд 3

Источники звука - различные колеблющиеся тела

естественные искусственные Речь Звуки которые издают живые организмы Шум воды, ветра, деревьев Шум машин Звуки музыкальных организмов

Слайд 4

Процесс распространения звуковых волн

1.Источник звука 3.Приёмник звука 2. Передающая среда -газы -твёрдые тела -жидкости

Слайд 5

Скорость звука - это скорость прохождения звуковой волны по материи, окружающей источник звука.

Зависит от: плотности среды, в которой распространяется звуковая волна. Сквозь газообразную среду, жидкости и в твердые тела звук проходит с разной скоростью. В воде звук распространяется быстрее, чем в воздухе. В твердых телах скорость звука выше, чем в жидкостях. Для каждого вещества скорость распространения звука постоянна.

Слайд 6

Звук в вакууме распространяться не может, т.к. здесь нет упругой среды, и поэтому не могут возникнуть упругие механические колебания.В каждой среде звук распространяется с разной скоростью. Скорость звука в воздухе - приблизительно 340 м/с. Скорость звука в воде - 1500 м/с. Скорость звука в металлах, в стали - 5000 м/с.

Слайд 7

1) Высота звука

Высота звука определяется его частотой: чем больше частота колебаний в звуковой волне, тем выше звук. Колебаниям небольшой частоты соответствуют низкие звуки, колебаниям большой частоты - высокие звуки. Так, например, шмель машет в полете своими крылышками с меньшей частотой, чем комар: у шмеля она составляет 220 взмахов в секунду, а у комара - 500-600. Поэтому полет шмеля сопровождается низким звуком (жужжанием), а полет комара - высоким (писком). ХАРАКТЕРИСТИКИ ЗВУКА

Слайд 8

2) Громкость звука

Громкость зависит от амплитуды колебаний в звуковой волне. За единицу громкости звука принят 1 Бел (в честь Александра Грэхема Белла, изобретателя телефона). Громкость звука равна 1 Б, если его мощность в 10 раз больше порога слышимости. На практике громкость измеряют в децибелах (дБ).1 дБ = 0,1Б. 10 дБ – шепот; 20–30 дБ – норма шума в жилых помещениях; 50 дБ – разговор средней громкости;70 дБ – шум пишущей машинки; ХАРАКТЕРИСТИКИ ЗВУКА Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

Слайд 9

3) Тембр звука

Тембр звука определяется формой звуковых колебаний. Мы знаем, что ветви камертона совершают гармонические (синусоидальные) колебания. Таким колебаниям присуща только одна строго определенная частота. Гармонические колебания являются самым простым видом колебаний. Звук камертона является чистым тоном. Чистым тоном называется звук источника, совершающего гармонические колебания одной частоты. ХАРАКТЕРИСТИКИ ЗВУКА Звуки от других источников (например, звуки различных музыкальных инструментов, голоса людей, звук сирены и многие другие) представляют собой совокупность гармонических колебаний разных частот, т. е. совокупность чистых тонов.

Слайд 10

Неслышимые звуки для человека

Издают ультра звуки дельфины, летучие мыши. Слышат и издают слоны, тигры, киты. Ультразвуки- упругие колебания и волны, частота которых превышает 15 – 20 кГц. Инфразву́ки -имеют частоту ниже воспринимаемой человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16-25 Гц. Нижняя граница условно определена как 0.001 Гц. Человеческое ухо устроено так, что воспринимает звуки с частотой от 20 до 18-20 тысяч колебаний в секунду.

Слайд 11

Эхо

Эхо - это не что иное, как возвращение звуковых волн, отразившихся от препятствий. Эхолокация - способ, при помощи которого положение объекта определяется по времени задержки возвращений отражённой волны. Животные используют эхолокацию для ориентации в пространстве и для определения местоположения объектов вокруг, в основном при помощи высокочастотных звуковых сигналов. Наиболее развита у летучих мышей и дельфинов.

Слайд 12

Использование эхолокации.

Ультрасонограф – используют в медицине, благодаря ему можно рассматривать различные органы организма Гидролока́тор, или сона́р,- средство звукового обнаружения подводных объектов. Эхолот - узкоспециализированный гидролокатор, устройство для исследования рельефа дна водного бассейна.

Слайд 13

Шум

Шум - беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры.

Слайд 14

На сегодня урок закончен! Спасибо за внимание!

Посмотреть все слайды

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Звуковые волны Выполнили: Рубан Анастасия Габова Валерия ученицы 11А класса проверила: Глушкова Т.А. учитель физики

2 слайд

Описание слайда:

Звук Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычный человек способен слышать звуковые колебания в диапазоне частот от 16-20 Гц до 15-20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, - ультразвуком, от 1 ГГц - гиперзвуком. Громкость звука сложным образом зависит от эффективного звукового давления, частоты и формы колебаний, а высота звука - не только от частоты, но и от величины звукового давления. Звук - физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. В узком смысле под звуком имеют в виду эти колебания, рассматриваемые в связи с тем, как они воспринимаются органами чувств животных и человека.

3 слайд

Описание слайда:

Звуковые волны в газах и жидкостях могут быть только продольными, так как эти среды обладают упругостью лишь по отношению к деформациям сжатия (растяжения). В твердых телах звуковые волны могут быть как продольными, так и поперечными, так как твердые тела обладают упругостью по отношению к деформациям сжатия (растяжения) и сдвига. Звук в газах Звук в жидкостях

4 слайд

Описание слайда:

Интенсивность звука Интенсивностью звука (или силой звука) называется величина, определяемая средней по времени энергией, переносимой звуковой волной в единицу времени сквозь единичную площадку, перпендикулярную направлению распространения волны: Чувствительность человеческого уха различна для разных частот. Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсив­ностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существуют наименьшая (порог слышимости) и наибольшая (порог болевого ощущения) интенсивности звука, которые способны вызвать звуковое восприятие. I=W/(St)

5 слайд

Описание слайда:

6 слайд

Описание слайда:

Уровень силы звука За увлечение громкой музыкой, особенно модной в наше время, многие тысячи подростков расплачиваются приобретенной тугоухостью. Звук Порог слышимости вдб Едва слышимый звук 0 Шепот около уха 25-30 Речь средней громкости 60-70 Очень громкая речь (крик) 90 Рёв взлетающего авиалайнера 120 На концертах рок и поп музыки в центре зала 106-108 На концертах рок и поп музыки у сцены 120

7 слайд

Описание слайда:

Воздействие звуковых волн Швейцарский ученый Ханс Йенни изучал воздействие звука на неорганическую материю, в том числе и на воду Под воздействием звука капелька воды, вибрируя, принимала форму трёхмерной звезды или двойного четырехгранника в кругах. Чем выше была частота вибрации, тем сложнее были формы. Но как только звук стихал, красивейшие образования снова становились по форме капелькой воды.

8 слайд

Описание слайда:

Японский учёный профессор Эмото Масару проводил эксперименты по воздействию на воду различной музыки, молитв, нецензурных выражений, положительных и негативных высказываний. Опыты Эмото Масару показали, что результатом воздействия духовной и классической музыки, молитв и слов несущих положительную энергетику, является образование в обычной воде снежинок поразительной красоты.

9 слайд

Описание слайда:

10 слайд

Описание слайда:

Напротив, при воздействии нецензурных выражений, слов, несущих отрицательную энергетику, в обычной воде кристаллическая структура не образовывалась вовсе, а предварительно хорошо сформированная кристаллическая структура воды разрушалась. Структура воды копирует энергоинформационное поле, в котором она находится, а мы на 90 % состоим из воды. Положительная или отрицательная энергетика звуков речи или музыкального произведения воздействует на весь организм целиком, вплоть до структуры клеток.

11 слайд

Описание слайда:

Российские ученые под руководством П.П. Гаряева с сотрудниками Института общей генетики доказали, что ДНК воспринимает человеческую речь. Если человек в своей речи использует нецензурные выражения, его хромосомы начинают менять свою структуру, в молекулах ДНК начинает вырабатываться своего рода отрицательная программа, которую можно назвать «программой самоликвидации», и это передается потомкам человека. Ученые зафиксировали: бранное слово вызывает мутагенный эффект, аналогичный радиационному излучению мощностью в тысячу рентген!

12 слайд

Описание слайда:

Напротив, звуки высокой частоты в благоприятном для человека диапазоне влияют на нас благотворно, повышая уровень энергии, вызывают радость и хорошее настроение. Высокочастотные звуки активизируют мозговую деятельность, улучшают память, стимулируют процессы мышления, в то же время снимая мышечное напряжение и производя различную балансировку вашего тела. После исследования музыки, написанной различными композиторами, французский отоларинголог Альфред Томатис выяснил, что музыка Моцарта в наибольшей степени содержит в себе высокочастотные звуки, подзаряжающие и активизирующие мозг. Очень полезно слушать голоса птиц, звуки природы. Также важен расширенный речевой диапазон (от 60 до 6000 Гц) потому, что речь представляет собой сложные сигналы, которые помимо основных тонов содержат еще много кратных им по частоте гармоник. Наш родной русский язык в этом смысле очень перспективный, потому что включает как очень низкие, так и очень высокие частоты. Область американского и английского гораздо уже.

13 слайд

Описание слайда:

Применение звуковых волн Ультразвуковым волнам было найдено больше применения во многих областях человеческой деятельности: в промышленности, в медицине, в быту, ультразвук использовали для бурения нефтяных скважин и т.д. До сих пор высокочастотные звуковые волны применяли в медицине только для диагностики состояния внутренних органов. Сейчас они становятся прецизионным инструментом хирурга. С их помощью можно "сваривать" разрушать опухоли без наркоза, без единого разреза живых тканей.

Звуковые волны. Скорость звука


Звук – это воспринимаемые человеческими органами слуха механические волны, которые вызывают звуковые ощущения.

Источниками звука могут быть любые тела, которые совершают колебания со звуковой частотой (от 16 до 20000 Гц).



Диапазон слышимых звуков.

Дети

16-22000

Человек в возрасте 20 лет

Человек в возрасте 35 лет

16-20000

Человек в возрасте 50 лет

16-15000

16-12000

Сверчок

Кузнечик

10-100000

Лягушка

50-30000

Дельфин

400-200000



Инфразвук человек не воспринимает, хотя может ощущать его воздействие вследствие резонанса.

Частота колебаний инфразвука меньше 16 в секунду, т. е. ниже порога слышимости.


Понятие об ультразвуке

Ультразвук - высокочастотные механические колебания частиц твердой, жидкой или газообразной среды, неслышимые человеческим ухом. Частота колебаний ультразвука выше 20 000 в секунду, т. е. выше порога слышимости.


Ультразвук и инфразвук

Ультразвук и инфразвук распространены в природе так же широко, как и волны звукового диапазона. Их излучают и используют для своих «переговоров» дельфины, летучие мыши и некоторые другие существа.


Источники звука

Естественные

Искусственные

(камертон, струна, колокол, мембрана и др.)


Для существования звука необходимы :

1. Источник звука

2. Среда

3. Слуховой аппарат

4. Частота 16–20000 Гц

5. Интенсивность


Приемники звуковых волн:

Естественный ухо. Чувствительность его зависит от частоты звуковой волны: чем меньше частота волны, тем меньше чувствительность уха. Исключительная избирательность: дирижер улавливает звуки отдельных инструментов.

Искусственный микрофон. Он преобразует механические звуковые колебания в электрические.


Распространение звука

Звук распространяется в любой упругой среде – твердой, жидкой и газообразной, но не может распространяться в пространстве, где нет вещества (например, в вакууме)



Из истории открытия скорости звука .

Скорость звука в воздухе впервые была определена в 1708 году английским ученым Уильямом Деремом. В двух пунктах, расстояние между которыми было известно, стреляли из пушек. В обоих пунктах измеряли промежутки времени между появлением огня при выстреле и моментом, когда слышался звук выстрела. Скорость звука в воздухе 340 м/с


Высота, тембр и громкость звука

2 часть


Физические характеристики звука

Объективные:

Звуковое давление (давление, оказываемое звуковой волной на стоящее перед ней препятствие);

Спектр звука – разложение сложной звуковой волны на составляющие ее частоты;

Интенсивность звуковой волны.


Субъективные:

- Громкость

- Высота

- Тембр


Высота звука – характеристика, которая определяется частотой колебаний . Чем больше частота у тела, которое производит колебания, тем звук будет выше.

Тембром называется окраска звука .

Тембр – это то, чем отличаются два одинаковых звука, исполненные различными музыкальными инструментами.

Громкость звука зависит от амплитуды колебаний .


Громкость звука

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук.

Громкость звука – это субъективное качество слухового ощущения, позволяющее располагать звуки по шкале от тихих до громких.

Единица громкости звука называется сон.


Тембр.

Качество музыкального звука, его своеобразная «окраска» характеризуется тембром. Вот некоторые характеристики тембра: густой, глубокий, мужественный, суровый, бархатистый, матовый, блестящий, легкий, тяжелый, насыщенный.

Тембр зависит от материала, из которого изготовлен инструмент, от формы инструмента.



Чистый тон

Чистым тоном называется звук источника, совершающего гармонические колебания одной частоты

Ветви камертона совершают гармонические (синусоидальные) колебания. Таким колебаниям присуща только одна строго определенная частота. Гармонические колебания являются самым простым видом колебаний. Звук камертона является чистым тоном .


Шум – это громкие звуки разных частот, слившиеся в нестройное звучание.


Больше читайте

физику

и счастье

улыбнется вам!

Похожие статьи