Значение биоорганической химии для биологии и медицины. История развития биоорганической химии. Энергетическое окисление. Оксидазные реакции

Привет! Многие студенты медицинских вузов сейчас разбирают биоорганическую химию, она же – БОХ.

В некоторых вузах этот предмет заканчивается зачётом, в некоторых – экзаменом. Иногда бывает, что зачёт в одном вузе сравним по сложности с экзаменом в другом.

В моём университете биоорганическая химия сдавалась как раз экзаменом во время летней сессии в самый конец первого курса. Надо сказать, что БОХ относится к тем предметам, которые поначалу ужасают и могут вселять мысль — «это сдать невозможно». Особенно это конечно касается людей со слабой базой органической химии (а таких в медицинских университетах, как ни странно, довольно много).

Программы изучения биоорганической химии в разных университетах могут очень сильно отличаться, а методики преподавания – ещё сильнее.

Однако требования к студентам везде примерно одинаковые. Если очень упростить, то чтобы сдать биоорганическую химию на 5, вы должны знать названия, свойства, особенности строения и типичные реакции ряда органических веществ.

Наш преподаватель, уважаемый профессор, подавал материал так, будто бы каждый студент был самым лучшим в школе по органической химии (а биоорганическая химия по сути представляет собой усложнённый курс школьной органической химии). Наверное, он был прав в своём подходе, все должны тянуться наверх и стараться быть лучшими. Однако это привело к тому, что некоторые студенты, которые на первых 2-3 парах не понимали материал частично, ближе к середине семестра вообще перестали понимать всё.

Я решил написать этот материал по большей части из-за того, что я как раз и был таким студентом. В школе я очень любил неорганическую химию, а вот с органикой у меня всегда не складывалось. Я даже когда готовился к ЕГЭ, выбрал стратегию усиления всех своих знания по неорганике, в то же время закрепляя только базу органики. Мне кстати это чуть не вышло боком в плане вступительных баллов, но это другая история.

Я не зря сказал про методику преподавания, потому что у нас она была тоже весьма необычная. Нам сразу же, чуть ли не на первой паре, продемонстрировали методички, по которым мы должны были сдавать зачёты и затем экзамен.

Биоорганическая химия — зачёты и экзамен

Весь курс у нас делился на 4 крупных темы, каждая из которых заканчивалась зачётным занятием. Вопросы к каждому из четырёх зачётов у нас уже были с первых пар. Они, конечно же, пугали, однако в то же время они служили своеобразной картой, по которой следует двигаться.

Первый зачёт был совсем элементарный. Он был посвящён, в основном, номенклатуре, тривиальным (бытовым) и международным названиям, и, конечно же, классификации веществ. Также в том или ином виде затрагивались признаки ароматичности.

Второй зачёт после первого казался значительно более сложным. Там необходимо было расписывать свойства и реакции таких веществ, как кетоны, альдегиды, спирты, карбоновые кислоты. Например, одна из типичнейших реакций альдегидов — это реакция серебряного зеркала. Довольно красивое зрелище. Если к какому-либо альдегиду вы добавите реактив Толленса, то есть ОН, то на стенке пробирки вы увидите осадок, напоминающий зеркало, вот как это выглядит:

Третий зачёт на фоне второго не казался таким грозным. Все уже привыкли писать реакции и запоминать свойства по классификациям. В третьем зачёте речь шла о соединениях с двумя функциональными группами – аминофенолы, аминоспирты, оксокислоты и другими. Также в каждом билете был минимум один билет про углеводы.

Четвёртый зачёт по биоорганической химии был почти целиком и полностью посвящён белкам, аминокислотам и пептидным связям. Особой изюминкой были вопросы, на которых требовалось собрать РНК и ДНК.

Кстати, как раз вот так выглядит аминокислота — вы можете увидеть аминогруппу (она подкрашена жёлтым на этом рисунке) и группу карбоксильной кислоты (она сиреневая). Именно с веществами этого класса приходилось иметь дело в четвертом зачёте.

Каждый зачёт сдавался у доски – студент должен без подсказок расписать и пояснить все необходимые свойства в виде реакций. Например, если вы сдаёте второй зачёт, у вас в билете свойства спиртов. Вам преподаватель говорит – возьми пропанол. Вы пишете формулу пропанола и 4-5 типичных реакций, чтобы проиллюстрировать его свойства. Могла быть и экзотика, вроде серосодержащих соединений. Ошибка даже в индексе одного продукта реакции зачастую отправляла дальше учить этот материал до следующей попытки (которая была через неделю). Страшно? Сурово? Конечно!

Однако у такого подхода есть очень приятный побочный эффект. Во время регулярных семинарских занятий приходилось тяжко. Многие сдавали зачёты по 5-6 раз. Но зато на экзамене было очень легко, ведь каждый билет содержал 4 вопроса. Именно, по одному из каждого уже выученного и решённого зачёта.

Поэтому я даже не буду расписывать тонкости подготовки к экзамену по биоорганической химии. В нашем случае вся подготовка сводилась к тому, как мы готовились к самим зачётам. Уверенно сдал каждый из четырёх зачётов – перед экзаменом просто просмотри свои же черновики, распиши ещё самые основные реакции и сразу всё восстановится. Дело в том, что органическая химия — это очень логичная наука. Запоминать нужно не огромные строки реакций, а сами механизмы.

Да, отмечу, что это работает далеко не со всеми предметами. Грозную анатомию не получится сдать, просто почитав свои записи накануне. Ряд других предметов также имеет свои особенности. Даже если в вашем медицинском университете биоорганическая химия преподаётся как-то иначе, возможно, вам нужно будет скорректировать вашу подготовку и осуществлять её немного не так, как делал я. В любом случае, удачи вам, понимайте и любите науку!

БИООРГАНИЧЕСКАЯ ХИМИЯ, изучает связь между строением органических веществ и их биологическими функциями, используя в основном методы органической и физической химии, а также физики и математики. Биоорганическая химия полностью охватывает химию природных соединений и частично пересекается с биохимией и молекулярной биологией. Объектами её изучения служат биологически важные природные соединения - главным образом биополимеры (белки, нуклеиновые кислоты, полисахариды и смешанные биополимеры) и низкомолекулярные биологически активные вещества - витамины, гормоны, антибиотики, токсины и так далее, а также синтетические аналоги природных соединений, лекарственные препараты, пестициды и др.

Биоорганическая химия сформировалась как самостоятельная область во 2-й половине 20 века на стыке биохимии и органической химии на основе традиционной химии природных соединений. Её становление связано с именами Л. Полинга (открытие α-спирали и β-структуры как главных элементов пространственной структуры полипептидной цепи в белках), А. Тодда (выяснение химического строения нуклеотидов и первый синтез динуклеотида), Ф. Сенгера (разработка метода определения аминокислотной последовательности в белках и расшифровка с его помощью первичной структуры инсулина), В. Дю Виньо (выделение, установление структуры и химический синтез пептидных гормонов - окситоцина и вазопрессина), Д. Бартона и В. Прелога (конформационный анализ), Р. Вудворда (полный химический синтез многих сложных природных соединений, в том числе резерпина, хлорофилла, витамина В 12) и др.; в СССР огромную роль сыграли работы Н. Д. Зелинского, А. Н. Белозерского, И. Н. Назарова, Н. А. Преображенского и др. Инициатором исследований по биоорганической химии в СССР в начале 1960-х годов явился М. М. Шемякин. Им, в частности, были начаты работы (впоследствии получившие широкое развитие) по изучению циклических депсипептидов, выполняющих функцию ионофоров. Лидером отечественной биоорганической химии в 1970-80-х годах стал Ю.А. Овчинников, под руководством которого было установлено строение десятков белков, в том числе мембранных (впервые) - бактериородопсина и зрительного родопсина быка.

К основным направлениям биоорганической химии относятся:

1. Разработка методов выделения и очистки природных соединений. При этом для контроля за степенью очистки часто используют специфическую биологическую функцию изучаемого вещества (например, чистоту антибиотика контролируют по его антимикробной активности, гормона - по его влиянию на определённый биологический процесс и так далее). При разделении сложных природных смесей часто применяют методы высокоэффективной жидкостной хроматографии и электрофореза. С конца 20 века вместо поиска и выделения отдельных компонентов проводят тотальный скрининг биологических образцов на максимально возможное число компонентов того или иного класса соединений (смотри Протеомика).

2. Определение структуры изучаемых веществ. Под структурой понимают не только установление природы и порядок связи атомов в молекуле, но и их пространственное расположение. Для этого используют различные методы, в первую очередь химические (гидролиз, окислительное расщепление, обработка специфическими реагентами), позволяющие получать более простые вещества с известной структурой, по которым реконструируют структуру исходного вещества. Широко применяют автоматические устройства, обеспечивающие быстрое решение стандартных задач, особенно в химии белков и нуклеиновых кислот: анализаторы для количественного определения аминокислотного и нуклеотидного состава и секвенаторы для выяснения последовательности аминокислотных остатков в белках и нуклеотидов в нуклеиновых кислотах. Важную роль при изучении структуры биополимеров играют ферменты, особенно те, которые специфически расщепляют их по строго определённым связям (например, протеиназы, катализирующие реакции расщепления пептидных связей по остаткам глутаминовой кислоты, пролина, аргинина и лизина, или рестриктазы, специфически расщепляющие фосфодиэфирные связи в полинуклеотидах). Сведения о строении природных соединений получают также с помощью физических методов исследования - главным образом масс-спектрометрии, ядерного магнитного резонанса и оптической спектроскопии. Повышение эффективности химических и физических методов достигается благодаря одновременному анализу не только природных соединений, но и их производных, содержащих характерные, специально вводимые группировки и меченые атомы (например, путём выращивания бактерий - продуцентов того или иного соединения на среде, содержащей предшественников этого соединения, обогащённых стабильными или радиоактивными изотопами). Достоверность данных, получаемых при изучении сложных белков, значительно повышается при одновременном исследовании строения соответствующих генов. Пространственную структуру молекул и их аналогов в кристаллическом состоянии исследуют методом рентгеноструктурного анализа. Разрешение в ряде случаев достигает значений менее 0,1 нм. Для растворов наиболее информативен метод ЯМР в сочетании с теоретическим конформационным анализом. Добавочную информацию дают оптические спектральные методы анализа (электронные и флуоресцентные спектры, спектры кругового дихроизма и др.).

3. Синтез как самих природных соединений, так и их аналогов. Во многих случаях химический или химико-ферментативный синтез является единственным способом получения нужного вещества в больших (препаративных) количествах. Для относительно простых низкомолекулярных соединений встречный синтез служит важным критерием правильности ранее определённой структуры. Созданы автоматические синтезаторы белков и полинуклеотидов, позволяющие значительно сокращать время синтеза; с их помощью синтезирован ряд белков и полинуклеотидов, содержащих несколько сотен мономерных звеньев. Химический синтез - основной способ получения лекарственных препаратов неприродного происхождения. В случае природных веществ он часто дополняет биосинтез или конкурирует с ним.

4. Установление клеточной и молекулярной мишени, на которую направлено действие биологически активного вещества, выяснение химического механизма его взаимодействия с живой клеткой и её компонентами. Понимание молекулярного механизма действия необходимо для продуктивного использования биомолекул, с их зачастую чрезвычайно высокой активностью (например, токсинов), в качестве инструментов исследования биологических систем; оно служит основой для направленного синтеза новых, практически важных веществ с заранее заданными свойствами. В ряде случаев (например, при изучении пептидов, влияющих на деятельность нервной системы) получаемые таким образом вещества обладают многократно усиленной, по сравнению с исходным природным прототипом, изменённой в нужном направлении активностью.

Биоорганическая химия тесно связана с решением практических задач медицины и сельского хозяйства (получение витаминов, гормонов, антибиотиков и других лекарственных средств, стимуляторов роста растений, регуляторов поведения животных, в том числе насекомых), химической, пищевой и микробиологической промышленности. В результате сочетания методов биоорганической химии и генетической инженерии стало возможным практическое решение проблемы промышленного получения сложных, биологически важных веществ белково-пептидной природы, включая такие высокомолекулярные, как инсулин человека, α-, β- и γ-интерфероны, гормон роста человека.

Лит.: Дюга Г., Пенни К. Биоорганическая химия. М., 1983; Овчинников Ю. А. Биоорганическая химия. М., 1996.

Биоорганическая химия - это фундаментальная наука, которая изучает строение и биологические функции важнейших компонентов живой материи, в первую очередь, биополимеров и низкомолекулярных биорегуляторов, уделяя главное внимание выяснению закономерностей взаимосвязи между структурой соединений и их биологическим действием .

Биоорганическая химия - наука на стыке химии и биологии , она способствует раскрытию принципов функционирования живых систем. Биоорганическая химия имеет выраженную практическую направленность, являясь теоретической основой получения новых ценных соединений для медицины , сельского хозяйства, химической, пищевой и микробиологической промышленности. Круг интересов биоорганической химии необычайно широк - это и мир веществ, выделяемых из живой природы и играющих важную роль в жизнедеятельности, и мир искусственно получаемых органических соединений, обладающих биологической активностью. Биоорганическая химия охватывает химию всех веществ живой клетки, десятки и сотни тысяч соединений.

Объекты изучения, методы исследования и основные задачи биоорганической химии

Объектами изучения биоорганической химии являются белки и пептиды, углеводы , липиды , биополимеры смешанного типа - гликопротеины, нуклеопротеины, липопротеины, гликолипиды и т.п., алкалоиды, терпеноиды, витамины, антибиотики, гормоны, простогландины, феромоны, токсины, а также синтетические регуляторы биологических процессов: лекарственные препараты, пестициды и др.

Основной арсенал методов исследования биоорганической химии составляют методы ; для решения структурных задач используют физические, физико-химические, математические и биологические методы.

Основными задачами биоорганической химии являются:

  • Выделение в индивидуальном состоянии и очистка изучаемых соединений с помощью кристаллизации, перегонки, различных видов хроматографии, электрофореза, ультрафильтрации, ультрацентрифугирования и др. При этом зачастую используют специфические биологические функции изучаемого вещества (например, контроль чистоты антибиотика ведется по его антимикробной активности, гормона - по его влиянию на определенный физиологический процесс и т.д.);
  • Установление структуры, включая пространственное строение, на основе подходов органической химии (гидролиз, окислительное расщепление, расщепление по специфическим фрагментам, например, по остаткам метионина при установлении строения пептидов и белков, расщепление по 1,2-диольным группировкам углеводов и др.) и физико-химической химии с применением масс-спектрометрии, различных видов оптической спектроскопии (ИК, УФ, лазерной и др.), рентгеноструктурного анализа, ядерного магнитного резонанса, электронного парамагнитного резонанса, дисперсии оптического вращения и кругового дихроизма, методов быстрой кинетики и др. в сочетании с расчетами на ЭВМ. Для быстрого решения стандартных задач, связанных с установлением структуры ряда биополимеров, созданы и находят широкое применение автоматические устройства, принцип действия которых основан на стандартных реакциях и свойствах природных и биологически активных соединений. Это анализаторы для определения количественного аминокислотного состава пептидов, секвенаторы для подтверждения либо установления последовательности аминокислотных остатков в пептидах и нуклеотидной последовательности в нуклеиновых кислотах и др. Важное значение при изучении строения сложных биополимеров имеет использование ферментов , специфично расщепляющих изучаемые соединения по строго определенным связям. Такие ферменты используются при изучении строения белков (трипсин, протеиназы, расщепляющие пептидные связи по остаткам глутаминовой кислоты, пролина и другим аминокислотным остаткам), нуклеиновых кислот и полинуклеотидов (нуклеазы, рестриктазы), углеводсодержащих полимеров (гликозидазы, в т.ч. специфические - галактозидазы, глюкуронидазы и т.д.). Для повышения результативности исследований анализу подвергают не только природные соединения, но и их производные, содержащие характерные, специально вводимые группировки и меченые атомы. Такие производные получают, например, путем выращивания продуцента на среде, содержащей меченые аминокислоты или другие радиоактивные предшественники, в состав которых входят тритий, радиоактивный углерод или фосфор. Достоверность данных, получаемых при изучении сложных белков, значительно повышается, если это изучение проводят в комплексе с исследованием строения соответствующих генов.
  • Химический синтез и химическая модификация изучаемых соединений, включая полный синтез, синтез аналогов и производных. Для низкомолекулярных соединений важным критерием правильности установленной структуры до сих пор является встречный синтез. Разработка методов синтеза природных и биологически активных соединений необходима для решения следующей важной задачи биоорганической химии - выяснения связи их строения и биологической функции.
  • Выяснение связи строения и биологических функций биополимеров и низкомолекулярных биорегуляторов; изучение химических механизмов их биологического действия. Этот аспект биоорганической химии приобретает все большее практическое значение. Совершенствование арсенала методов химического и химико-ферментативного синтеза сложных биополимеров (биологически активных пептидов, белков, полинуклеотидов, нуклеиновых кислот, включая активно функционирующие гены) в совокупности со все более совершенствующейся техникой синтеза относительно более простых биорегуляторов, а также методов избирательного расщепления биополимеров позволяют все глубже понимать зависимость биологического действия от строения соединений. Использование высокоэффективной вычислительной техники дает возможность объективно сопоставлять многочисленные данные разных исследователей и находить общие закономерности. Найденные частные и общие закономерности, в свою очередь, стимулируют и облегчают синтез новых соединений, что в ряде случаев (например, при изучении пептидов, влияющих на деятельность мозга) позволяет находить практически важные синтетические соединения, превосходящие по биологической активности их природные аналоги. Изучение химических механизмов биологического действия открывает возможности создания биологически активных соединений с заранее заданными свойствами.
  • Получение практически ценных препаратов.
  • Биологическое тестирование полученных соединений.

Становление биоорганической химии. Историческая справка

Становление биоорганической химии в мире происходило в конце 50-х - начале 60-х гг., когда основными объектами исследований в этой области стали четыре класса органических соединений, играющих ключевую роль в жизни клетки и организма, - белки , полисахариды и липиды . Выдающиеся достижения традиционной химии природных соединений, такие как открытие Л. Полингом α-спирали как одного из главных элементов пространственной структуры полипептидной цепи в белках, установление А. Тоддом химического строения нуклеотидов и первый синтез динуклеотида, разработка Ф. Сенгером метода определения аминокислотной последовательности в белках и расшифровка с его помощью структуры инсулина, синтез Р. Вудвордом таких сложных природных соединений, как резерпин, хлорофилл и витамин В 12 , синтез первого пептидного гормона окситоцина, ознаменовали, по существу, превращение химии природных соединений в современную биоорганическую химию.

Однако в нашей стране интерес к белкам и нуклеиновым кислотам возник существенно раньше. Первые исследования по химии белка и нуклеиновых кислот были начаты еще в середине 20-х гг. в стенах Московского университета, и именно здесь сложились первые научные школы, успешно работающие в этих важнейших областях естествознания и по сей день. Так, в 20-е гг. по инициативе Н.Д. Зелинского были начаты систематические исследования по химии белка, главной задачей которых было выяснение общих принципов строения белковых молекул. Н.Д. Зелинский создал первую в нашей стране лабораторию химии белка, в которой были выполнены важные работы по синтезу и структурному анализу аминокислот и пептидов. Выдающаяся роль в развитии этих работ принадлежит М.М. Ботвинник и ее ученикам, которые добились впечатляющих результатов в изучении структуры и механизма действия неорганических пирофосфатаз, ключевых ферментов фосфорного обмена в клетке. К концу 40-х гг., когда стала вырисовываться ведущая роль нуклеиновых кислот в генетических процессах, М.А. Прокофьев и З.А. Шабарова приступили к работам по синтезу компонентов нуклеиновых кислот и их производных, положив тем самым начало химии нуклеиновых кислот в нашей стране. Были осуществлены первые синтезы нуклеозидов, нуклеотидов и олигонуклеотидов, внесен большой вклад в создание отечественных автоматических синтезаторов нуклеиновых кислот.

В 60-е гг. это направление в нашей стране развивалось последовательно и стремительно, зачастую опережая аналогичные шаги и тенденции за рубежом. В становлении биоорганической химии огромную роль сыграли фундаментальные открытия А.Н. Белозерского , доказавшего существование ДНК в высших растениях и систематически изучавшего химический состав нуклеиновых кислот, классические исследования В.А. Энгельгардта и В.А. Белицера по окислительному механизму фосфорилирования, всемирно известные исследования А.Е. Арбузова по химии физиологически активных фосфорорганических соединений, а также фундаментальные работы И.Н. Назарова и Н.А. Преображенского по синтезу разнообразных природных веществ и их аналогов и другие работы. Крупнейшие заслуги в создании и развитии биоорганической химии в СССР принадлежат академику М.М. Шемякину . Им, в частности, были начаты работы по изучению атипичных пептидов - депсипептидов, которые впоследствии получили широкое развитие в связи с их функцией как ионофоров. Талант, прозорливость и кипучая деятельность этого и других ученых способствовали быстрому росту международного авторитета советской биоорганической химии, ее консолидации на наиболее актуальных направлениях и организационному укреплению в нашей стране.

В конце 60-х - начале 70-х гг. в синтезе биологически активных соединений сложной структуры начали применять в качестве катализаторов ферменты (т.н. комбинированный химико-ферментативный синтез). Этот подход был использован Г. Кораной для первого синтеза гена. Использование ферментов позволило осуществить строго избирательное превращение ряда природных соединений и получить с высоким выходом новые биологически активные производные пептидов, олигосахаридов и нуклеиновых кислот. В 70-х гг. наиболее интенсивно развивались такие разделы биоорганической химии как синтез олигонуклеотидов и генов, исследования клеточных мембран и полисахаридов, анализ первичной и пространственной структур белков. Были изучены структуры важных ферментов (трансаминаза, β-галактозидаза, ДНК-зависимая РНК-полимераза), защитных белков (γ-глобулины, интерфероны), мембранных белков (аденозинтрифосфатазы, бактериородопсин). Большое значение приобрели работы по изучению строения и механизма действия пептидов - регуляторов нервной деятельности (т.н. нейропептиды).

Современная отечественная биоорганическая химия

В настоящее время отечественная биоорганическая химия занимает ведущие позиции в мире по ряду ключевых направлений. Достигнуты крупные успехи в исследовании структуры и функции биологически активных пептидов и сложных белков, включая гормоны, антибиотики, нейротоксины. Важные результаты получены в химии мембранно-активных пептидов. Исследованы причины уникальной избирательности и эффективности действия диспепсидов-ионофоров и выяснен механизм из функционирования в живых системах. Получены синтетические аналоги ионофоров с заданными свойствами, во много раз превосходящие по эффективности природные образцы (В.Т. Иванов, Ю.А. Овчинников). Уникальные свойства ионофоров используются для создания на их основе ионселективных датчиков, получивших широкое распространение в технике. Успехи, достигнутые при изучении другой группы регуляторов - нейротоксинов, являющихся ингибиторами передачи нервных импульсов, привели к их широкому использованию в качестве инструментов для изучения мембранных рецепторов и других специфических структур клеточных мембран (Е.В. Гришин). Развитие работ по синтезу и изучению пептидных гормонов привело к созданию высокоэффективных аналогов гормонов окситоцина, ангиотензина II и брадикинина, ответственных за сокращение гладкой мускулатуры и регуляцию кровяного давления. Крупным успехом явился полный химический синтез инсулиновых препаратов, в том числе инсулина человека (Н.А. Юдаев, Ю.П. Швачкин и др.). Открыт и изучен ряд белковых антибиотиков, в том числе грамицидин S, полимиксин М, актиноксантин (Г.Ф. Гаузе, А.С. Хохлов и др.). Активно развиваются работы по исследованию структуры и функции мембранных белков, осуществляющих рецепторные и транспортные функции. Получены фоторецепторные белки родопсин и бактериородопсин и изучены физико-химические основы их функционирования в качестве светозависимых ионных насосов (В.П. Скулачев, Ю.А. Овчинников, М.А. Островский). Широко исследуются строение и механизм функционирования рибосом - основных систем биосинтеза белков в клетке (А.С. Спирин, А.А. Богданов). Большие циклы исследований связаны с изучением ферментов, определением их первичной структуры и пространственного строения, изучением каталитических функций (аспартатаминотрансферазы, пепсин, химотрипсин, рибонуклеазы, ферменты фосфорного обмена, гликозидазы, холинэстеразы и др.). Разработаны методы синтеза и химической модификации нуклеиновых кислот и их компонентов (Д.Г. Кнорре, М.Н. Колосов, З.А. Шабарова), разрабатываются подходы к созданию на их основе лекарств нового поколения для лечения вирусных, онкологических и аутоиммунных заболеваний. С использованием уникальных свойств нуклеиновых кислот и на их основе создаются диагностические препараты и биосенсоры, анализаторы ряда биологически активных соединений (В.А. Власов, Ю.М. Евдокимов и др.)

Значительные успехи достигнуты в синтетической химии углеводов (синтез бактериальных антигенов и создание искусственных вакцин, синтез специфических ингибиторов сорбции вирусов на клеточной поверхности, синтез специфических ингибиторов бактериальных токсинов (Н.К. Кочетков, А.Я. Хорлин)). Существенные успехи достигнуты при изучении липидов, липоаминокислот, липопептидов и липопротеинов (Л.Д. Бергельсон, Н.М. Сисакян). Разработаны методы синтеза многих биологически активных жирных кислот, липидов и фосфолипидов. Изучено трансмембранное распределение липидов в различных видах липосом, в бактериальных мембранах и в микросомах печени.

Важным направлением биоорганической химии является изучение разнообразных природных и синтетических веществ, способных регулировать различные процессы, протекающие в живых клетках. Это репелленты, антибиотики, феромоны, сигнальные вещества, ферменты, гормоны, витамины и другие (т.н. низкомолекулярные регуляторы). Разработаны методы синтеза и производства практически всех известных витаминов, значительной части стероидных гормонов и антибиотиков. Разработаны промышленные методы получения ряда коферментов, применяемых в качестве лечебных препаратов (коэнзим Q, пиридоксальфосфат, тиаминпирофосфат и др.). Предложены новые сильные анаболитики, превосходящие по действию известные зарубежные препараты (И,В. Торгов, С.Н. Ананченко). Исследованы биогенез и механизмы действия природных и трансформированных стероидов. Существенные успехи достигнуты в изучении алкалоидов, стероидных и тритерпеновых гликозидов, кумаринов. Оригинальные исследования выполнены в области химии пестицидов, которые привели к выпуску ряда ценных препаратов (И.Н. Кабачник, Н.Н. Мельников и др.). Ведется активный поиск новых лекарственных препаратов, необходимых для лечения разнообразных заболеваний. Получены препараты, доказавшие свою эффективность при лечении ряда онкологических заболеваний (допан, сарколизин, фторафур и др.).

Приоритетные направления и перспективы развития биоорганической химии

Приоритетными направлениями научных исследований в области биоорганической химии являются:

  • исследование структурно-функциональной зависимости биологически активных соединений;
  • дизайн и синтез новых биологически активных препаратов, включая создание лекарственных средств и средств защиты растений;
  • исследование высокоэффективных биотехнологических процессов;
  • исследование молекулярных механизмов процессов, происходящих в живом организме.

Ориентированные фундаментальные исследования в области биоорганической химии направлены на изучение структуры и функции важнейших биополимеров и низкомолекулярных биорегуляторов, в том числе белков, нуклеиновых кислот, углеводов, липидов, алкалоидов, простагландинов и других соединений. Биоорганическая химия тесно связана с практическими задачами медицины и сельского хозяйства (получение витаминов, гормонов, антибиотиков и других лекарственных средств, стимуляторов роста растений и регуляторов поведения животных и насекомых), химической, пищевой и микробиологической промышленности. Результаты научных исследований являются основой для создания научно-технической базы технологий производства современных средств медицинской иммунодиагностики, реагентов для медико-генетических исследований и реактивов для биохимического анализа, технологий синтеза субстанций лекарственных препаратов для применения в онкологии, вирусологии, эндокринологии, гастроэнтерологии, а также химических средств защиты растений и технологий их применения для сельского хозяйства.

Решение основных проблем биоорганической химии важно для дальнейшего прогресса биологии , химии и ряда технических наук . Без выяснения строения и свойств важнейших биополимеров и биорегуляторов нельзя познать сущность жизненных процессов, а тем более найти пути управления такими сложными явлениями, как размножение и передача наследственных признаков, нормальный и злокачественный рост клеток, иммунитет, память , передача нервных импульсов и многое другое. В то же время изучение высокоспециализированных биологически активных веществ и процессов, протекающих с их участием, может открыть принципиально новые возможности для развития химии, химической технологии и техники. К проблемам, решение которых связано с исследованиями в области биоорганической химии, относится создание строго специфичных высокоактивных катализаторов (на основе изучения строения и механизма действия ферментов), прямое превращение химической энергии в механическую (на основе изучения мышечного сокращения), использование в технике химических принципов хранения и передачи информации, осуществляемых в биологических системах, принципов саморегулирования многокомпонентных систем клетки, в первую очередь избирательной проницаемости биологических мембран, и многое др. Перечисленные проблемы лежат далеко за пределами собственно биоорганической химии, однако она создает основные предпосылки для разработки этих проблем, обеспечивая главные опорные пункты для развития биохимических исследований, относящихся уже к области молекулярной биологии. Широта и важность решаемых проблем, разнообразие методов и тесная связь с другими научными дисциплинами обеспечивают быстрое развитие биоорганической химии.. Вестник Московского Университета, серия 2, Химия. 1999. Т. 40. № 5. С. 327-329.

Бендер М., Бергерон Р., Комияма М. Биоорганическая химия ферментативного катализа . Пер. с англ. М.: Мир, 1987. 352 С.

Яковишин Л.А. Избранные главы биоорганической химии . Севастополь: Стрижак-пресс, 2006. 196 С.

Николаев А.Я. Биологическая химия . М.: Медицинское информационное агентство, 2001. 496 С.

, антибиотики , феромоны , сигнальные вещества , биологически активные вещества растительного происхождения, а также синтетические регуляторы биологических процессов (лекарственные препараты , пестициды и др.). Как самостоятельная наука сформировалась во второй половине XX века на стыке биохимии и органической химии и связана с практическими задачами медицины , сельского хозяйства , химической , пищевой и микробиологической промышленности.

Методы

Основной арсенал составляют методы органической химии, для решения структурно-функциональных задач привлекаются разнообразные физические, физико-химические , математические и биологические методы.

Объекты изучения

  • Биополимеры смешанного типа
  • Природные сигнальные вещества
  • Биологически активные вещества растительного происхождения
  • Синтетические регуляторы (лекарственные препараты , пестициды и т. п.).

Источники

  • Овчинников Ю. А. . - М .: Просвещение, 1987. - 815 с.
  • Бендер М., Бергерон Р., Комияма М.
  • Дюга Г., Пенни К. Биоорганическая химия. - М.: Мир, 1983.
  • Тюкавкина Н. А., Бауков Ю. И.

См. также

Напишите отзыв о статье "Биоорганическая химия"

Отрывок, характеризующий Биоорганическая химия

– Ma chere, il y a un temps pour tout, [Милая, на все есть время,] – сказала графиня, притворяясь строгою. – Ты ее все балуешь, Elie, – прибавила она мужу.
– Bonjour, ma chere, je vous felicite, [Здравствуйте, моя милая, поздравляю вас,] – сказала гостья. – Quelle delicuse enfant! [Какое прелестное дитя!] – прибавила она, обращаясь к матери.
Черноглазая, с большим ртом, некрасивая, но живая девочка, с своими детскими открытыми плечиками, которые, сжимаясь, двигались в своем корсаже от быстрого бега, с своими сбившимися назад черными кудрями, тоненькими оголенными руками и маленькими ножками в кружевных панталончиках и открытых башмачках, была в том милом возрасте, когда девочка уже не ребенок, а ребенок еще не девушка. Вывернувшись от отца, она подбежала к матери и, не обращая никакого внимания на ее строгое замечание, спрятала свое раскрасневшееся лицо в кружевах материной мантильи и засмеялась. Она смеялась чему то, толкуя отрывисто про куклу, которую вынула из под юбочки.
– Видите?… Кукла… Мими… Видите.
И Наташа не могла больше говорить (ей всё смешно казалось). Она упала на мать и расхохоталась так громко и звонко, что все, даже чопорная гостья, против воли засмеялись.
– Ну, поди, поди с своим уродом! – сказала мать, притворно сердито отталкивая дочь. – Это моя меньшая, – обратилась она к гостье.
Наташа, оторвав на минуту лицо от кружевной косынки матери, взглянула на нее снизу сквозь слезы смеха и опять спрятала лицо.
Гостья, принужденная любоваться семейною сценой, сочла нужным принять в ней какое нибудь участие.
– Скажите, моя милая, – сказала она, обращаясь к Наташе, – как же вам приходится эта Мими? Дочь, верно?
Наташе не понравился тон снисхождения до детского разговора, с которым гостья обратилась к ней. Она ничего не ответила и серьезно посмотрела на гостью.
Между тем всё это молодое поколение: Борис – офицер, сын княгини Анны Михайловны, Николай – студент, старший сын графа, Соня – пятнадцатилетняя племянница графа, и маленький Петруша – меньшой сын, все разместились в гостиной и, видимо, старались удержать в границах приличия оживление и веселость, которыми еще дышала каждая их черта. Видно было, что там, в задних комнатах, откуда они все так стремительно прибежали, у них были разговоры веселее, чем здесь о городских сплетнях, погоде и comtesse Apraksine. [о графине Апраксиной.] Изредка они взглядывали друг на друга и едва удерживались от смеха.

Столько было всяких удивительных происшествий,

Что ничто не казалось ей теперь совсем не возможным

Л. Кэрролл «Алиса в стране чудес»

Биоорганическая химия развивалась на границе между двумя науками: химией и биологией. В настоящее время к ним присоединились медицина и фармакология. Все эти четыре науки используют современные методы физических исследований, математического анализа и компьютерного моделирования.

В 1807 году Й.Я . Берцелиус предложил, что вещества, подобные оливковому маслу или сахару, которые распространены в живой природе, следует называть органическими.

К этому времени уже были известны многие природные соединения, которые впоследствии стали определять как углеводы, белки, липиды, алкалоиды.

В 1812 г. российский химик К.С.Кирхгоф превратил крахмал, нагревая его с кислотой, в сахар, названный позднее глюкозой.

В 1820 г. французский химик А. Браконно , обрабатывая белок желатину, получил вещество глицин, относящееся к классу соединений, которые позднее Берцелиус назвал аминокислотами .

Датой рождения органической химии можно считать опубликованную в 1828 году работу Ф.Велера , который впервые синтезировал вещество природного происхождения мочевину- из неорганического соединения цианата аммония.

В 1825 году физик Фарадей выделил бензол из газа, который использовали для освещения города Лондона. Присутствием бензола можно объяснить коптящее пламя лондонских фонарей..

В 1842 г. Н.Н. Зинин осуществил синтез анилина ,

В 1845 г. А.В. Кольбе, ученик Ф. Велера, синтезировал уксусную кислоту- несомненно природное органическое соединение - из исходных элементов(углерода, водорода, кислорода)

В 1854 г. П. М. Бертло нагревал глицерин со стеариновой кислотой и получил тристеарин, который оказался идентичным(одинаковым) с природным соединением, выделенным из жиров. Далее П.М. Бертло взял другие кислоты, которые не были выделены из природных жиров и получил соединения, очень похожие на природные жиры. Этим французский химик доказал, что можно получать не только аналоги природных соединений, но и создавать новые, похожие и одновременно отличающиеся от природных.

Многие крупные достижения органической химии второй половины Х1Х связаны с синтезом и изучением природных веществ.

В 1861 г. немецкий химик Фридрих Август Кекуле фон Страдонитц(называемый всегда в научной литературе просто Кекуле) опубликовал учебник, в котором определил органическую химию как химию углерода.


В период 1861- 1864 гг. российский химик А.М. Бутлеров создал единую теорию строения органических соединений, которая позволила перевести все имеющиеся достижения на единую научную основу и открыла путь к развитию науки органической химии.

В этот же период Д.И Менделеев. известный всему миру как ученый, который открыл и сформулировал периодический закон изменения свойств элементов, опубликовал учебник « Органическая химия». В нашем распоряжении есть его 2-е издание.(исправленное и дополненное, Издание Товарищества «Общественная польза», Санкт-Петербург, 1863г. 535 с)

В своей книге великий ученый четко определил связь органических соединений и процессов жизнедеятельности: « Многие из тех процессов и веществ, которые производятся организмами, мы можем воспроизвести искусственно, вне организма. Так, белковые вещества, разрушаясь в животных под влиянием кислорода, .поглощенного кровью, превращаются в аммиачные соли, мочевину, слизевый сахар, бензойную кислоту и др. вещества, обычно выделяющиеся мочой…Отдельно взятое каждое жизненное явление не есть следствие какой-то особой силы, но совершается по общим законам природы ». В те времена биоорганическая химия и биохимия еще не сформировались как

самостоятельные направления, вначале их объединяла физиологическая химия , но постепенно они выросли на основе всех достижений в две самостоятельные науки.

Наука биоорганическая химия изучает связь между строением органических веществ и их биологическими функциями, используя, в основном, методы органической, аналитический, физической химии, а также математики и физики

Главной отличительной чертой этого предмета является исследование биологической активности веществ в связи с анализом их химической структуры

Объекты изучения биоорганической химии : биологически важные природные биополимеры – белки, нуклеиновые кислоты, липиды, низкомолекулярные вещества – витамины, гормоны, сигнальные молекулы, метаболиты – вещества участвующие в энергетическом и пластическом обмене веществ, синтетические лекарственные препараты.

К основным задачам биоорганической химии относятся:

1. Разработка методов выделения, очистки природных соединений, использование методов медицины для оценки качества препарата (например, гормона по степени его активности);

2. Определение строения природного соединения. Используются все методы химии: определение молекулярной массы, гидролиз, анализ функциональных групп, оптические методы исследования;

3. Разработка методов синтеза природных соединений;

4. Изучение зависимости биологического действия от строения;

5.Выяснение природы биологической активности, молекулярных механизмов взаимодействия с различными структурами клетки или с ее компонентами.

Развитие биоорганической химии на протяжении десятилетий связано с именами российских ученых: Д.И.Менделеева, А.М. Бутлерова, Н.Н.Зинина, Н.Д.Зелинского А.Н.Белозерского Н.А.Преображенского М.М.Шемякина, Ю.А. Овчинникова.

Основоположниками биоорганической химии за рубежом являются ученые, совершившие многие крупнейшие открытия: строение вторичной структуры белка (Л. Полинг), полный синтез хлорофилла, витамина В 12 (Р. Вудворд), использование ферментов в синтезе сложных органических веществ. в том числе, гена (Г. Корана) и другие

На Урале в г. Екатеринбурге в области биоорганической химии с 1928 по 1980 гг. работал заведующий кафедрой органической химии УПИ академик И.Я.Постовский, известный как один из создателей в нашей стране научного направления поиска и синтеза лекарственных препаратов и автор ряда препаратов(сульфаниламидов, противоопухолевых, противолучевых, противотуберкулезных).. Его исследования продолжают ученики, которые работают под руководством академиков О.Н.Чупахина, В.Н. Чарушина в УГТУ-УПИ и в Институте органического синтеза им. И.Я. Постовского Российской Академии Наук.

Биоорганическая химия тесно связана с задачами медицины, необходима для изучения, понимания биохимии, фармакологии, патофизиологии, гигиены. Весь научный язык биоорганической химии, принятые обозначения и используемые методы не отличаются от органической химии, которую вы изучали в школе

Похожие статьи

  • "Системно- деятельностный подход в обучении математике", презентация Основная педагогическая задача –

    Вопросы 1. Научные основы системно-деятельностного подхода в образовании. 2. Основные идеи системно-деятельностного подхода в соответствии с ФГОС. 3. Условия реализации системно- деятельностного подхода. 4. Технология реализации...

  • Докучные сказки Докучная сказка про кота

    Не сказать ли тебе сказочку про белого бычка? Я скажи, ты скажи. Не сказать ли тебе сказочку про белого бычка? Не хочу! Я не хочу, ты не хочешь. Не сказать ли тебе сказочку про белого бычка? Отстань! Я отстань, ты отстань. Не сказать ли...

  • Как придумать сказку вместе с детьми: советы Джанни Родари

    СОВ Е Т Ы М А Л Е НЬКИ М Ш К О Л Ь Н И К АМ Ответы к стр. 30 Чтобы сочинить волшебную сказку, нужно вспомнить всё, о чём мы знаем: особенности волшебной сказки; построение сказки (присказка, зачин, концовка); сказочные герои;...

  • Викторина для подростков "все обо всем" классный час на тему

    Кросс - вопрос. Интеллектуальный марафон Предварительно формируются 3—4 команды по 10—12 человек, которые придумывают себе названия и делают эмблемы. Ведущий. Поспешите все на кросс! Начинаем «кросс-вопрос»! Участники кросса, Не бойтесь...

  • Кавказцы в армии и идеалист акопов

    Увеличенная квота на граждан Дагестана – вот, пожалуй, все, что отличает нынешний весенний призыв на службу в российской армии от предыдущих. Квоту увеличили полгода назад по решению министра обороны Сергея Шойгу, которое он принял после...

  • Дамба Три Ущелья в Китае: интересные факты

    Самая крупная в мире гидроэлектростанция на сегодняшний день построена в Китае в провинции Хубей на реке Янцзы - "Длинная река", самой длинной реке не только Китая, но всей Евразии. "Гений инженерной мысли", "чудеса инженерии", так...