Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор. Принцип суперпозиции электрических полей Принцип суперпоз

Материал из Википедии - свободной энциклопедии

При́нцип суперпози́ции - один из самых общих законов во многих разделах физики . В самой простой формулировке принцип суперпозиции гласит:

  • Результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.
  • Любое сложное движение можно разделить на два и более простых.

Наиболее известен принцип суперпозиции в электростатике , в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов .

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

  • Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.
  • Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий .
  • Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

В некоторых случаях эти нелинейности невелики, и принцип суперпозиции с некоторой степенью приближения может выполняться. В других случаях нарушение принципа суперпозиции велико и может приводить к принципиально новым явлениям. Так, например, два луча света, распространяющиеся в нелинейной среде, могут изменять траекторию друг друга. Более того, даже один луч света в нелинейной среде может воздействовать сам на себя и изменять свои характеристики. Многочисленные эффекты такого типа изучает нелинейная оптика .

Отсутствие принципа суперпозиции в нелинейных теориях

Тот факт, что уравнения классической электродинамики линейны, является скорее исключением, чем правилом. Многие фундаментальные теории современной физики являются нелинейными. Например, квантовая хромодинамика - фундаментальная теория сильных взаимодействий - является разновидностью теории Янга - Миллса , которая нелинейна по построению. Это приводит к сильнейшему нарушению принципа суперпозиции даже в классических (неквантованных) решениях уравнений Янга - Миллса.

Другим известным примером нелинейной теории является общая теория относительности . В ней также не выполняется принцип суперпозиции. Например, Солнце притягивает не только Землю и Луну, но также и само взаимодействие между Землёй и Луной. Впрочем, в слабых гравитационных полях эффекты нелинейности слабы, и для повседневных задач приближённый принцип суперпозиции выполняется с высокой точностью.

Наконец, принцип суперпозиции не выполняется, когда речь идёт о взаимодействии атомов и молекул . Это можно пояснить следующим образом. Рассмотрим два атома, связанных общим электронным облаком . Поднесем теперь точно такой же третий атом. Он как бы оттянет на себя часть связывающего атомы электронного облака, и в результате связь между первоначальными атомами ослабнет. То есть, присутствие третьего атома изменяет энергию взаимодействия пары атомов. Причина этого проста: третий атом взаимодействует не только с первыми двумя, но и с той «субстанцией», которая обеспечивает связь первых двух атомов.

Нарушение принципа суперпозиции во взаимодействиях атомов в немалой степени приводит к тому удивительному разнообразию физических и химических свойств веществ и материалов, которое так трудно предсказать из общих принципов молекулярной динамики.

Напишите отзыв о статье "Принцип суперпозиции"

Отрывок, характеризующий Принцип суперпозиции

Толпа, окружавшая икону, вдруг раскрылась и надавила Пьера. Кто то, вероятно, очень важное лицо, судя по поспешности, с которой перед ним сторонились, подходил к иконе.
Это был Кутузов, объезжавший позицию. Он, возвращаясь к Татариновой, подошел к молебну. Пьер тотчас же узнал Кутузова по его особенной, отличавшейся от всех фигуре.
В длинном сюртуке на огромном толщиной теле, с сутуловатой спиной, с открытой белой головой и с вытекшим, белым глазом на оплывшем лице, Кутузов вошел своей ныряющей, раскачивающейся походкой в круг и остановился позади священника. Он перекрестился привычным жестом, достал рукой до земли и, тяжело вздохнув, опустил свою седую голову. За Кутузовым был Бенигсен и свита. Несмотря на присутствие главнокомандующего, обратившего на себя внимание всех высших чинов, ополченцы и солдаты, не глядя на него, продолжали молиться.
Когда кончился молебен, Кутузов подошел к иконе, тяжело опустился на колена, кланяясь в землю, и долго пытался и не мог встать от тяжести и слабости. Седая голова его подергивалась от усилий. Наконец он встал и с детски наивным вытягиванием губ приложился к иконе и опять поклонился, дотронувшись рукой до земли. Генералитет последовал его примеру; потом офицеры, и за ними, давя друг друга, топчась, пыхтя и толкаясь, с взволнованными лицами, полезли солдаты и ополченцы.

Покачиваясь от давки, охватившей его, Пьер оглядывался вокруг себя.
– Граф, Петр Кирилыч! Вы как здесь? – сказал чей то голос. Пьер оглянулся.
Борис Друбецкой, обчищая рукой коленки, которые он запачкал (вероятно, тоже прикладываясь к иконе), улыбаясь подходил к Пьеру. Борис был одет элегантно, с оттенком походной воинственности. На нем был длинный сюртук и плеть через плечо, так же, как у Кутузова.
Кутузов между тем подошел к деревне и сел в тени ближайшего дома на лавку, которую бегом принес один казак, а другой поспешно покрыл ковриком. Огромная блестящая свита окружила главнокомандующего.
Икона тронулась дальше, сопутствуемая толпой. Пьер шагах в тридцати от Кутузова остановился, разговаривая с Борисом.
Пьер объяснил свое намерение участвовать в сражении и осмотреть позицию.
– Вот как сделайте, – сказал Борис. – Je vous ferai les honneurs du camp. [Я вас буду угощать лагерем.] Лучше всего вы увидите все оттуда, где будет граф Бенигсен. Я ведь при нем состою. Я ему доложу. А если хотите объехать позицию, то поедемте с нами: мы сейчас едем на левый фланг. А потом вернемся, и милости прошу у меня ночевать, и партию составим. Вы ведь знакомы с Дмитрием Сергеичем? Он вот тут стоит, – он указал третий дом в Горках.
– Но мне бы хотелось видеть правый фланг; говорят, он очень силен, – сказал Пьер. – Я бы хотел проехать от Москвы реки и всю позицию.
– Ну, это после можете, а главный – левый фланг…
– Да, да. А где полк князя Болконского, не можете вы указать мне? – спросил Пьер.
– Андрея Николаевича? мы мимо проедем, я вас проведу к нему.
– Что ж левый фланг? – спросил Пьер.
– По правде вам сказать, entre nous, [между нами,] левый фланг наш бог знает в каком положении, – сказал Борис, доверчиво понижая голос, – граф Бенигсен совсем не то предполагал. Он предполагал укрепить вон тот курган, совсем не так… но, – Борис пожал плечами. – Светлейший не захотел, или ему наговорили. Ведь… – И Борис не договорил, потому что в это время к Пьеру подошел Кайсаров, адъютант Кутузова. – А! Паисий Сергеич, – сказал Борис, с свободной улыбкой обращаясь к Кайсарову, – А я вот стараюсь объяснить графу позицию. Удивительно, как мог светлейший так верно угадать замыслы французов!
– Вы про левый фланг? – сказал Кайсаров.
– Да, да, именно. Левый фланг наш теперь очень, очень силен.
Несмотря на то, что Кутузов выгонял всех лишних из штаба, Борис после перемен, произведенных Кутузовым, сумел удержаться при главной квартире. Борис пристроился к графу Бенигсену. Граф Бенигсен, как и все люди, при которых находился Борис, считал молодого князя Друбецкого неоцененным человеком.
В начальствовании армией были две резкие, определенные партии: партия Кутузова и партия Бенигсена, начальника штаба. Борис находился при этой последней партии, и никто так, как он, не умел, воздавая раболепное уважение Кутузову, давать чувствовать, что старик плох и что все дело ведется Бенигсеном. Теперь наступила решительная минута сражения, которая должна была или уничтожить Кутузова и передать власть Бенигсену, или, ежели бы даже Кутузов выиграл сражение, дать почувствовать, что все сделано Бенигсеном. Во всяком случае, за завтрашний день должны были быть розданы большие награды и выдвинуты вперед новые люди. И вследствие этого Борис находился в раздраженном оживлении весь этот день.
За Кайсаровым к Пьеру еще подошли другие из его знакомых, и он не успевал отвечать на расспросы о Москве, которыми они засыпали его, и не успевал выслушивать рассказов, которые ему делали. На всех лицах выражались оживление и тревога. Но Пьеру казалось, что причина возбуждения, выражавшегося на некоторых из этих лиц, лежала больше в вопросах личного успеха, и у него не выходило из головы то другое выражение возбуждения, которое он видел на других лицах и которое говорило о вопросах не личных, а общих, вопросах жизни и смерти. Кутузов заметил фигуру Пьера и группу, собравшуюся около него.
– Позовите его ко мне, – сказал Кутузов. Адъютант передал желание светлейшего, и Пьер направился к скамейке. Но еще прежде него к Кутузову подошел рядовой ополченец. Это был Долохов.
– Этот как тут? – спросил Пьер.

Если стержень будет очень длинным (бесконечным), т.е. x «a , из (2.2.13) следует (2.2.14) Определим в этом последнем случае также потенциал поля. Для этого воспользуемся связью между напряженностью и потенциалом. Как видно из (2.2.14) в случае бесконечного стержня напряженность в любой точке поля имеет только радиальную составляющую Е . Следовательно потенциал будет зависеть лишь от этой координаты и из (2.1.11) получим - = . (2.2.15) Постоянную в (2.2.5) находят, положив потенциал равным нулю на некотором расстоянии L от стержня, и тогда . (2.2.16) Лекция 2.3 Поток вектора . Теорема Гаусса. Потоком вектора через какую-либо поверхность называется поверхностный интеграл
,

где = – вектор, по направлению совпадающий с нормалью к поверхности ( единичный вектор нормали к поверхности) и по модулю равный площади . Так как под интегралом стоит скалярное произведение векторов, то поток может получаться как положительным, так и отрицательным, в зависимости от выбора направления вектора . Геометрически поток пропорционален числу силовых линий, пронизывающих данную площадку (см. рис.2.3.1).

Теорема Гаусса.

Поток вектора напряженности электрического поля через произвольную

замкнутую поверхность равен алгебраической сумме зарядов, заключенных

внутри этой поверхности, деленной на (в системе СИ)

. (2.3.1)

В случае замкнутой поверхности вектор выбирают от поверхности наружу.

Таким образом, если силовые линии выходят из поверхности, поток будет положительным, а если входят, то – отрицательным.

Расчет электрических полей с помощью теоремы Гаусса.

В ряде случаев напряженность электрического поля по теореме Гаусса рассчи-

тывается достаточно просто. Однако в основе лежит принцип суперпозиции.

Поскольку поле точечного заряда является центрально-симметричным, то поле

центрально-симметричной системы зарядов также будет центрально-симметричным. Простейший пример – поле равномерно заряженного шара. Если распределение заряда обладает осевой симметрией, то и структура поля будет отличаться осевой симметрией. Примером может служить бесконечная равномерно заряженная нить или цилиндр. Если заряд равномерно распределен по бесконечной плоскости, то силовые линии поля будут располагаться симметрично относительно симметрии заряда. Таким образом, указанный метод расчета применяют в случае высокой степени симметрии распределения заряда, создающего поля. Далее приведем примеры расчета таких полей.

Электрическое поле однородно заряженного шара.

Шар радиуса равномерно заряжен с объемной плотностью . Рассчитаем поле внутришара .

Система зарядов центрально-симметричная. В

качестве поверхности интегрирования выберем

сферу радиуса r (r <R ), центр которой совпадает

с центром симметрии заряда (см. рис.2.3.2). Рассчитаем поток вектора через эту поверхность.

Вектор направлен по радиусу. Так как поле

обладает центральной симметрией, то

значение Е будет одинаково во всех точках

выбранной поверхности. Тогда

Теперь найдем заряд, заключенный внутри выбранной поверхности

Отметим, что, если заряд распределен не по всему объему шара, а лишь по его поверхности (задана заряженная сфера ), то напряженность поля внутри будет равна нулю .

Рассчитаем поле вне шара см. рис. 2.3.3.

Теперь поверхность интегрирования полностью охватывает весь заряд шара. Теорема Гаусса запишется в виде

Учтем, что поле центрально симметричное

Окончательно для напряженности поля снаружи заряженного шара получим

Таким образом, поле вне равномерно заряженного шара будет иметь такой же вид, как для точечного заряда, помещенного в центре шара. Тот же результат получим и для равномерно заряженной сферы.

Проанализировать полученный результат (2.3.2) и (2.3.3) можно с помощью графика рис.2.3.4.

Электрическое поле бесконечного равномерно заряженного цилиндра.

Пусть бесконечно длинный цилиндр заряжен равномерно с объемной плотностью .

Радиус цилиндра равен . Найдем поле внутри цилиндра , как функцию

расстояния от оси. Поскольку система зарядов имеет осевую симметрию,

поверхностью интегрирования мысленно выберем также цилиндр меньшего

радиуса и произвольной высоты , ось которого совпадает с осью симметрии задачи (рис.2.3.5). Рассчитаем поток через поверхность этого цилиндра, разбив его на интеграл по боковой поверх-

ности и по основаниям

Из соображений симметрии

следует, что направлен радиально. Тогда, так как силовые линии поля не пронизывают ни одно из оснований выбранного цилиндра,то поток через эти поверхности равен нулю. Поток вектора через боковую поверхность цилиндра запишется:

Подставим оба выражения в исходную формулу теоремы Гаусса (2.3.1)

После несложных преобразований получим выражение для напряженности электрического поля внутри цилиндра

В этом случае также, если заряд распределен только по поверхности цилиндра, то напряженность поля внутри равна нулю.

Теперь найдем поле снаружи заряженного цилиндра

Мысленно выберем в качестве поверхности, через которую будем рассчитывать поток вектора , цилиндр радиуса и произвольной высоты (см. рис. 2.3.6).

Поток запишется так же как и для внутренней области. А заряд, заключенный внутри мысленного цилиндра, будет равен:

После несложных преобразований получим выражение для напряженности электрического

поля снаружи заряженного цилиндра:

Если ввести в этой задаче линейную плотность заряда, т.е. заряд на единице длины цилиндра , то выражение (2.3.5) преобразуется к виду

Что соответствует результату, полученному с помощью принципа суперпозиции (2.2.14).

Как видим зависимости в выражениях (2.3.4) и (2.3.5) разные. Построим график .

Поле бесконечной равномерно заряженной плоскости.

Бесконечная плоскость равномерно заряжена с поверхностной плотностью . Силовые линии электрического поля симметричны относительно этой плоскости, а, следовательно вектор перпендикулярен заряженной плоскости. Мысленно выберем для интегрирования цилиндр произвольных размеров и расположим его как показано на рис.2.3.8. Запишем теорему Гаусса:) бывает удобно ввести скалярную характеристику изменения поля , называемую дивергенцией. Для определения этой характеристики выберем в поле малый объем вблизи некоторой точки Р и найдем поток вектора через поверхность, ограничивающую этот объем. Затем поделим полученную величину на объем и возьмем предел полученного отношения при стягивании объема к данной точке Р . Полученная величина называется дивергенцией вектора

. (2.3.7)

Из сказанного следует . (2.3.8)

Это соотношение носит название теорема Гаусса – Остроградского , оно справедливо для любого векторного поля.

Тогда из (2.3.1) и (2.3.8), принимая во внимание, что заряд, заключенный в объеме V, можно записать получим

или, так как в обеих частях уравнения интеграл берется по одному и тому же объему,

Это уравнение математически выражает теорему Гаусса для электрического поля в дифференциальной форме.

Смысл операции дивергенция состоит в том, что она устанавливает наличие источников поля (источников силовых линий). Точки, в которых дивергенция не равна нулю, являются источниками силовых линий поля. Таким образом, силовые линии электростатического поля начинаются и заканчиваются на зарядах.

Рассмотрим метод определения модуля и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов Q 1 , Q 2 , …,Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. § 6), т. е. результирующая силаF, действующая со стороны поля на пробный заряд Q 0 , равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Qi:

Согласно (79.1), и , где Е-напряженность результирующего поля, а Еi - напряженность поля, создаваемого зарядом Qi ;. Подставляя последние выражения в (80.1), получаем

(80.2)

Формула (80.2) выражаетпринцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя.Электрический диполь - система двух равных по модулю разно именных точечных зарядов (+Q, -Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называетсяплечом диполя 1. Вектор

совпадающий по направлению с плечом диполя и равный произведению заряда |Q | на плечо l , называетсяэлектрическим моментом диполя илидипольным моментом (рис. 122).

Рис. 122

где Е+ и Е- - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.

1. Напряженность поля на продолжении оси диполя в точке А (рис. 123). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Рис. 123

Обозначив расстояние от точки А до середины оси диполя через г, на основании формулы (79.2) для вакуума можно записать

Напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:

→ n → → →

Е = Σ Еi = Е 1 + Е 2 + …

Потенциал поля системы зарядов равен алгебраической сумме потенциалов в каждой точке по отдельности:

φ = Σ φi = φ 1 + φ 2 + …

Эти свойства электрического поля означает, что поле подчиняется принципу суперпозиции.

Теорема Гаусса и её применение для расчёта напряжённости электрического поля бесконечной равномерно заряженной плоскости, двух и более плоскостей; бесконечной равномерно заряженной нити, цилиндра; равномерно заряженной сферы, объёмно заряженного шара.

Теорема Гаусса : Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, поделенной на электрическую постоянную ε 0 .

Ф = ∫ Еп ds = 1/ ε 0 Σ qi

1.Поле равномерно заряженной бесконечной плоскости . Бесконечная плоскость (рис. 1) заряжена с постоянной поверхностной плотностью +σ (σ = dQ/dS - заряд, который приходится на единицу поверхности). Линии напряженности перпендикулярны данной плоскости и направлены от нее в каждую из сторон. Возьмем в качестве замкнутой поверхности цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности поля (соsα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Е n совпадает с Е), т. е. равен 2ES. Заряд, который заключен внутри построенной цилиндрической поверхности, равен σ∙S. Согласно теореме Гаусса, 2E∙S= σ ∙S/ε 0 , откуда

2.Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 2). Пусть плоскости заряжены равномерно разными по знаку зарядами с поверхностными плотностями +σ и –σ. Поле таких плоскостей будем искать как суперпозицию полей, которые создаются каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние - от отрицательно заряженной плоскости. Слева и справа от плоскостей поля вычитаются (поскольку линии напряженности направлены навстречу друг другу), значит здесь напряженность поля E=0. В области между плоскостями E = E+ + E- (E+ и E- находятся по формуле (1)), поэтому результирующая напряженность

3.Поле равномерно заряженного бесконечного цилиндра (нити) . Бесконечный цилиндр радиуса R (рис. 6) равномерно заряжен с линейной плотностью τ (τ = –dQ/dt заряд, который приходится на единицу длины). Из соображений симметрии мы видим, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. Мысленно построим в качестве замкнутой поверхности коаксиальный цилиндр радиуса r и высотой l . Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы и линии напряженности параллельны), а сквозь боковую поверхность равен 2πrl Е. Используя теорему Гаусса, при r>R 2πrl Е = τl /ε 0 , откуда

Если r

4.Поле равномерно заряженной сферической поверхности . Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +σ. Т.к. заряд распределен равномерно по поверхности то поле, которое создается им, обладает сферической симметрией. Значит линии напряженности направлены радиально (рис. 3). Проведем мысленно сферу радиуса r, которая имеет общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, который создает рассматриваемое поле, и, по теореме Гаусса, 4πr 2 E = Q/ε 0 , откуда

При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости Е от r приведен на рис. 4. Если r"

5.Поле объемно заряженного шара . Шар радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью ρ (ρ = dQ/dV – заряд, который приходится на единицу объема). Учитывая соображения симметрии, аналогичные п.3, можно доказать, что для напряженности поля вне шара получится тот же результат, что и в случае (3). Внутри же шара напряженность поля будет иная. Сфера радиуса r"

Значит, напряженность поля вне равномерно заряженного шара описывается формулой (3), а внутри его изменяется линейно с расстоянием r" согласно зависимости (4). График зависимости Е от r для рассмотренного случая показан на рис. 5.

Одной из основных задач электростатики является оценка параметров поля при заданном, стационарном, распределении зарядов в пространстве. Один из способов решения подобных задач основан на принципе суперпозиции . Суть его в следующем.

Если поле создается несколькими точечными зарядами, то на пробный заряд q действует со стороны заряда qk такая сила, как если бы других зарядов не было. Результирующая сила определится выражением:

это принцип суперпозиции или независимости действия сил.

Т.к. , то – результирующая напряженность поля в точке, где расположен пробный заряд, так же подчиняется принципу суперпозиции :

(1.4.1)

Это соотношение выражает принцип наложения или суперпозиции электрических полей и представляет важное свойство электрического поля. Напряженность результирующего поля, системы точечных зарядов равна векторной сумме напряженностей полей, созданных в данной точке каждым из них в отдельности.

Рассмотрим применение принципа суперпозиции в случае поля, созданного электрической системой из двух зарядов с расстоянием между зарядами, равными l (рис. 1.2).


Рис. 1.2

Поля, создаваемые различными зарядами, не влияют друг на друга, поэтому вектор результирующего поля нескольких зарядов может быть найден по правилу сложения векторов (правило параллелограмма)

.
, и , так как задача симметрична.

В данном случае

и

Следовательно,

(1.4.2)

Рассмотрим другой пример. Найдем напряженность электростатического поля Е , создаваемую двумя положительными зарядами q 1 и q 2 в точке А , находящейся на расстоянии r 1 от первого и r 2 от второго заря-дов (рис. 1.3).


Рис. 1.3

; .

Воспользуемся теоремой косинусов:

(1.4.3)

Где .

Если поле создается не точечными зарядами , то используют обычный в таких случаях прием. Тело разбивают на бесконечно малые элементы и определяют напряженность поля создаваемого каждым элементом, затем интегрируют по всему телу:

(1.4.4)

Где – напряженность поля, обусловленная заряженным элементом. Интеграл может быть линейным, по площади или по объему в зависимости от формы тела. Для решения подобных задач пользуются соответствующими значениями плотности заряда:
– линейная плотность заряда, измеряется в Кл/м;
– поверхностная плотность заряда, измеряется в Кл/м2;
– объемная плотность заряда, измеряется в Кл/м3.

Если же поле создано сложными по форме заряженными телами и неравномерно заряженными, то используя принцип суперпозиции, трудно найти результирующее поле.

формуле (1.4.4) мы видим, что – векторная величина:

(1.4.5)

Так что интегрирование может оказаться непростым. Поэтому для вычисления часто пользуются другими методами, которые мы обсудим в следующих темах. Однако в некоторых, относительно простых случаях эти формулы позволяют аналитически рассчитать .

В качестве примеров можно рассмотреть линейное распределение зарядов или распределение заряда по окружности .

Определим напряженность электрического поля в точке А (рис. 1.4) на расстоянии х от бесконечно длинного, линейного, равномерно распределенного заряда. Пусть λ – заряд, приходящийся на единицу длины.


Рис. 1.4

Считаем, что х – мало по сравнению с длиной проводника. Выберем систему координат так, чтобы ось y совпадала с проводником. Элемент длины dy , несет заряд Создаваемая этим элементом напряженность электрического поля в точке А .

Похожие статьи

  • Презентация на тему "Проект «Геном человека»"

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны. Подобные документы Окружающая и...

  • Постановка звука К', артикуляция звука К' Постановка звука пь

    Егорова О.В. Звуки П, ПЬ, Б, БЬ. Речевой материал и игры по автоматизации и дифференциации звуков у детей 5-7 лет. - М.: «Издательство «Гном и Д», 2005. - 24 с. Данное пособие адресовано логопедам, воспитателям логопеди­ческих групп,...

  • Урок обучения грамоте "Буква Т, звуки Т,т"

    Буква Т — особенная буква русского алфавита, которую очень легко запомнить ребенку. Она состоит всего из двух палочек. А чтобы легко и быстро выучить ее, прочитайте стихи про букву Т для детей. Стишки с картинками о букве Т в игривой форме...

  • Мастер-класс по синквейну «Поэтическая гостиная

    «Лирика Есенина» - 1916 год – в Петрограде выходит первый сборник стихов «Радуница». Лучшие свои произведения Есенин посвятил России. Потому, что я с севера, что ли. Любимое творение поэта. Хорошо и тепло, Как зимой у печки. Шаганэ ты моя,...

  • Солнце - это звезда или планета?

    Солнце является единственной звездой в Солнечной системе, вокруг нее совершают свое движение все планеты системы, а также их спутники и другие объекты, вплоть до космической пыли. Если сравнить массу Солнца с массой всей Солнечной системы,...

  • Монгольское нашествие на русь

    Хронология 1123 г. Сражение русских и половцев с монголами на реке Калка 1237 — 1240 гг. Завоевание Руси монголами 1240 г. Разгром князем Александром Ярославовичем шведских рыцарей на реке Неве (Невская битва) 1242 г. Разгром князем...