Бета окисление насыщенных кислот. Для окисления жирных кислот существует свой путь. Ямайская рвотная болезнь

Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО 2 и воды, тесно связанный с циклом трикарбоновых кислот и дыхательной цепью. Этот путь называется β-окисление , т.к. происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С 1 и С 2 исходной жирной кислоты.

Элементарная схема β-окисления

Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ. Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

Пальмитоил-SКоА + 7ФАД + 7НАД + + 7Н 2 O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН 2 + 7НАДН

Этапы окисления жирных кислот

1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-SКоА. Ацил-SКоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.

Ацил-SКоА-синтетазы находятся в эндоплазматическом ретикулуме, на наружной мембране митохондрий и внутри них. Существует широкий ряд синтетаз, специфичных к разным жирным кислотам.

Реакция активации жирной кислоты

2. Ацил-SКоА не способен проходить через митохондриальную мембрану, поэтому существует способ его переноса в комплексе с витаминоподобным веществом карнитином . На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I .

Карнитин-зависимый транспорт жирных кислот в митохондрию

Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен "смерти в колыбели ".

Дети раннего возраста, недоношенные и дети с малой массой особен-но чувствительны к недостаточности карнитина. Эндогенные запасы у них быстро истощаются при различных стрессовых ситуациях (инфекционные заболевания, желудочно-кишечные расстройства, нарушения вскармливания). Биосинтез карнитина резко ограничен в связи с небольшой мышечной массой, а поступление с обычными пищевыми продуктами неспособно поддержать достаточный уровень в крови и тканях.

3. После связывания с карнитином жирная кислота переносится через мембрану транслоказой . Здесь на внутренней стороне мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА который вступает на путь β-окисления.

4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА . К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

Последовательность реакций β-окисления жирных кислот

Расчет энергетического баланса β-окисления

Ранее при расчете эффективности окисления коэффициент P/O для НАДH принимался равным 3,0, для ФАДH 2 – 2,0.

По современным данным значение коэффициента P/O для НАДH соответствует 2,5, для ФАДH 2 – 1,5.

При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

  • количество образуемого ацетил-SКоА – определяется обычным делением числа атомов углерода в жирной кислоте на 2.
  • число циклов β-окисления . Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 -1), где n – число атомов углерода в кислоте.
  • число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН 2 не образуется. Количество недополученных ФАДН 2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений.
  • количество энергии АТФ , потраченной на активацию (всегда соответствует двум макроэргическим связям).

Пример. Окисление пальмитиновой кислоты

  • так как имеется 16 атомов углерода, то при β-окислении образуется 8 молекул ацетил-SКоА . Последний поступает в ЦТК, при его окислении в одном обороте цикла образуется 3 молекулы НАДН (7,5 АТФ), 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула ГТФ, что эквивалентно 10 молекулам АТФ. Итак, 8 молекул ацетил-SКоА обеспечат образование 8×10=80 молекул АТФ.
  • для пальмитиновой кислоты число циклов β-окисления равно 7 . В каждом цикле образуется 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула НАДН (2,5 АТФ). Поступая в дыхательную цепь, в сумме они "дадут" 4 молекулы АТФ. Таким образом, в 7 циклах образуется 7×4=28 молекул АТФ.
  • двойных связей в пальмитиновой кислоте нет .
  • на активацию жирной кислоты идет 1 молекула АТФ, которая, однако, гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ .

Таким образом, суммируя, получаем 80+28-2 =106 молекул АТФ образуется при окислении пальмитиновой кислоты.

Гидролиз триглицеридов осуществляет панкреатическая липаза. Ее оптимум рН=8, она гидролизует ТГ преимущественно в положениях 1 и 3, с образованием 2 свободных жирных кислот и 2-моноацилглицерола (2-МГ). 2-МГ является хорошим эмульгатором. 28% 2-МГ под действием изомеразы превращается в 1-МГ. Большая часть 1-МГ гидролизуется панкреатической липазой до глицерина и жирной кислоты.В поджелудочной железе панкреатическая липаза синтезируется вместе с белком колипазой. Колипаза образуется в неактивном виде и в кишечнике активируется трипсином путем частичного протеолиза. Колипаза своим гидрофобным доменом связывается с поверхностью липидной капли, а гидрофильным способствует максимальному приближению активного центра панкреатической липазы к ТГ, что ускоряет их гидролиз.

Бурая жировая ткань

Количество

Мало у взрослого человека, много у новорожденного

Локализация

В чистом виде: около почек и щитовидной железы.

Смешанная жировая ткань: между лопатками, на грудной клетке и плечах.

Кровоснабжение

Очень хорошее

Строение адипоцитов

В цитоплазме много мелких капелек жира, ядро и органеллы расположены в центре клетки, имеется много митохондрий и цитохромов.

термогенез

Окисление происходит в матриксе митохондрий. Сначала жирная кислота активируется: 1 .В цитоплазме каждой кислота активируется с использованием КоА-8Н и энергии АТФ. 2. Активная жирная кислота- ацил-КоА - из цитозоля транспортируется в матрикс митохондрий (МХ). КоА-8Н остается в цитозоле, а остаток жирной кислоты - ацил- соединяется с карнитином (от лат.- сагшз- мясо) - карнитин выделен из мышечной ткани) с образованием ацил-карнитина, который поступает в межмембранное пространство МХ. Их межмембранного пространства митохондрий комплекс ацил-карнитин переносится в матрикс МХ. При этом карнитин остается в межмембранном пространстве. В матриксе ацил соединяется с КоА-8Н. 3. Окисление. В матриксе МХ образуется активная жирная кислота, которая в дальнейшем подвергается реакциям окисления до конечных продуктов. При бета- окислении окисляется группа-СН2- в бета- положении жирной кислоты до группы-С-. При этом на двух стадиях происходит дегидрирование: при участии ацилдегидрогеназы (флавиновый фермент, водород переносится на убихинон) и бета-оксиацилдегидрогеназа (акцептор водорода НАД+). Затем бета -кетоацил-КоА при действии фермента тиолазы, распадается на ацетил КоА и ацил-КоА, укороченный на 2 углеродных атома по сравнению с исходным. Этот ацил-КоА вновь подвергается бета-окислению. Многократное повторение этого процесса приводит к полному распаду жирной кислоты до ацил-КоА. Окисление жирных кислот. Включает 2 этапа: 1.последовательное отщепление от С-конца кислоты двухуглеродного фрагмента в виде ацетил-КоА; 2.окисление ацетил-КоА в цикле Кребса до СО2 и Н2О. Энергетическая ценность окисления жирных кислот. Стеариновая кислота(С 18) проходит 8 циклов окисления с образованием 9 ацетил-КоА.В каждом цикле окисления образуется 8*5 АТФ=40 АТФ, ацетил-КоА дает 9*12 АТФ=108 АТФ. Итого:148 АТФ, но 1 АТФ расходуется на активацию жирной кислоты в цитозоле, поэтому итог 147 АТФ

    β - окисление высших жирных кислот (ВЖК). Энергетическая эффективность процесса (для предельных и непредельных жирных кислот). Влияние тканевого окисления ВЖК на утилизацию глюкозы тканями.

β-окисление - специфический путь катаболизма ЖК с неразветвленной средней и короткой углеводородной цепью. β-окисление протекает в матриксе митохондрий, при котором от С конца ЖК последовательно отделяется по 2 атома С в виде Ацетил-КоА. β-окисление ЖК происходит только в аэробных условиях и является источником большого количества энергии.β-окисление ЖК активно протекает в красных скелетных мышцах, сердечной мышце, почках и печени. ЖК не служат источником энергии для нервных тканей, так как ЖК не проходят через гематоэнцефалический барьер, как и другие гидрофобные вещества.β-окисление ЖК увеличивается в постабсорбтивный период, при голодании и физической работе. При этом концентрация ЖК в крови увеличивается в результате мобилизации ЖК из жировых ткани.

Активация ЖК

Активация ЖК происходит в результате образования макроэргической связи между ЖК и HSКоА с образованием Ацил-КоА. Реакцию катализирует фермент Ацил-КоА синтетаза:

RCOOH + HSKoA + АТФ → RCO~SКоА + АМФ+ PPн

Пирофосфат гидролизуется ферментом пирофосфатазой: Н 4 Р 2 О 7 + Н 2 О → 2Н 3 РО 4

Ацил-КоА синтетазы находятся как в цитозоле (на внешней мембране митохондрий), так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к ЖК с различной длиной углеводородной цепи.

Транспорт ЖК . Транспорт ЖК в матрикс митохондрий зависит от длины углеродной цепи.

ЖК с короткой и средней длиной цепи (от 4 до 12 атомов С) могут проникать в матрикс митохондрий путём диффузии. Активация этих ЖК происходит ацил-КоА синтетазами в матриксе митохондрий.ЖК с длинной цепью, сначала активируются в цитозоле (ацил-КоА синтетазами на внешней мембране митохондрий), а затем переносятся в матрикс митохондрий специальной транспортной системой с помощью карнитина. Карнитин поступает с пищей или синтезируется из лизина и метионина с участием витамина С.

В наружной мембране митохондрий фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I) катализирует перенос ацила с КоА на карнитин с образованием ацилкарнитина;

Ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью карнитинацилкарнитинтранслоказы на внутреннюю поверхность внутренней мембраны митохондрий;

Фермент карнитинацилтрансфераза II катализирует перенос ацила с карнитина на внутримитохондриальный HSКоА с образованием Ацил-КоА;

Свободный карнитин возвращается на цитозольную сторону внутренней мембраны митохондрий той же транслоказой.

Реакции β-окисление ЖК

1.​ β-окисление начинается с дегидрирования ацил-КоА ФАД-зависимой Ацил-КоА дегидрогеназой с образованием двойной связи (транс) между α- и β-атомами С в Еноил-КоА. Восстановленный ФАДН 2 окисляясь в ЦПЭ, обеспечивает синтез 2 молекул АТФ;

2.​ Еноил-КоА гидратаза присоединяет воду к двойной связи Еноил-КоА с образованием β-оксиацил-КоА;

3.​ β-оксиацил-КоА окисляется НАД зависимой дегидрогеназой до β-кетоацил-КоА. Восстановленный НАДН 2 , окисляясь в ЦПЭ, обеспечивает синтез 3 молекул АТФ;

4.​ Тиолаза с участием HКоА отщепляет от β-кетоацил-КоА Ацетил-КоА. В результате 4 реакций образуется Ацил-КоА, который короче предыдущего Ацил-КоА на 2 углерода. Образованный Ацетил-КоА окисляясь в ЦТК, обеспечивает синтез в ЦПЭ 12 молекул АТФ.

Затем Ацил-КоА снова вступает в реакции β-окисления. Циклы продолжаются до тех пор, пока Ацил-КоА не превратится в Ацетил-КоА с 2 атома С (если ЖК имела четное количество атомов С) или Бутирил-КоА с 3 атомами С (если ЖК имела нечетное количество атомов С).

Энергетический баланс окисления насыщенных жк с четным количеством атомов углерода

При активации ЖК затрачивается 2 макроэргической связи АТФ.

При окислении насыщенной ЖК с четным количеством атомов С образуются только ФАДН 2 , НАДН 2 и Ацетил-КоА.

За 1 цикл β-окисления образуется 1 ФАДН 2 , 1 НАДН 2 и 1 Ацетил-КоА, которые при окислении дают 2+3+12=17 АТФ.

Количество циклов при β-окислении ЖК = количество атомов С в (ЖК/2)-1. Пальмитиновая кислота при β-окислении проходит (16/2)-1 = 7 циклов. За 7 циклов образуется 17*7=119 АТФ.

Последний цикл β-окисления сопровождается образованием дополнительной Ацетил-КоА, которая при окислении дает 12 АТФ.

Таким образом, при окислении пальмитиновой кислоты образуется: -2+119+12=129 АТФ.

Суммарное уравнение β-окисления, пальмитоил-КоА:

С 15 Н 31 СО-КоА + 7 ФАД + 7 НАД + + 7 HSKoA → 8 CH 3 -CO-KoA + 7 ФАДН 2 + 7 НАДН 2

Энергетический баланс окисления насыщенных жк с нечетным количеством атомов углерода

β-окисление насыщенной ЖК с нечетным количеством атомов С в начале идет также как и с четным. На активацию затрачивается 2 макроэргической связи АТФ.

ЖК с 17 атомами С проходит при β-окислении 17/2-1 = 7 циклов. За 1 цикл из 1 ФАДН 2 , 1 НАДН 2 и 1 Ацетил-КоА образуется 2+3+12=17 АТФ. За 7 циклов образуется 17*7=119 АТФ.

Последний цикл β-окисления сопровождается образованием не Ацетил-КоА, а Пропионил-КоА с 3 атомами С.

Пропионил-КоА карбоксилируется с затратой 1 АТФ пропионил-КоА-карбоксилазой с образованием D-метилмалонил-КоА, который после изомеризации, превращается сначала в L-метилмалонил-КоА, а затем в Сукцинил-КоА. Сукцинил-КоА включается в ЦТК и при окислении дает ЩУК и 6 АТФ. ЩУК может поступать в глюконеогенез для синтеза глюкозы. Дефицит витамина В 12 приводит к накоплению в крови и выделению с мочой метилмалонила. При окислении ЖК образуется: -2+119-1+6=122 АТФ.

Суммарное уравнение β-окисления ЖК с 17 атомами С:

С 16 Н 33 СО-КоА + 7 ФАД + 7 НАД + + 7 HSKoA → 7 CH 3 -CO-KoA + 1 C 2 H 5 -CO-KoA + 7 ФАДН 2 + 7 НАДН 2

Энергетический баланс окисления ненасыщенных жк с четным количеством атомов углерода

Около половины ЖК в организме человека ненасыщенные. β-окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между 3 и 4 атомами С. Затем фермент еноил-КоА изомераза перемещает двойную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая необходима для β-окисления. В этом цикле β-окисления, так как двойная связь в ЖК уже имеется, первая реакция дегидрирования не происходит и ФАДН 2 не образуется. Далее циклы β-окисления продолжаются, не отличаясь от обычного пути.

Энергетический баланс рассчитывается также как и для насыщенных ЖК с четным количеством атомов С, только на каждую двойную связь недосчитывают 1 ФАДН 2 и соответственно 2 АТФ.

Суммарное уравнение β-окисления пальмитолеил-КоА:

С 15 Н 29 СО-КоА + 6 ФАД + 7 НАД + + 7 HSKoA → 8 CH 3 -CO-KoA + 6 ФАДН 2 + 7 НАДН 2

Энергетический баланс β-окисления пальмитолеиновой кислоты: -2+8*12+6*2+7*3=127 АТФ.

Голод, физическая нагрузка → глюкагон, адреналин → липолиз ТГ в адипоцитах → ЖК в крови → β-окисление в аэробных условиях в мышцах, печени → 1) АТФ; 2) АТФ, НАДH 2 , Ацетил-КоА, (ЖК) → ↓ гликолиз → экономию глюкозы, необходимую для нервной ткани, эритроцитов и т.д.

Пища → инсулин → гликолиз → Ацетил-КоА → синтез малонил-КоА и ЖК

Синтез малонил-КоА → малонил-КоА → ↓ карнитинацилтрансферазы I в печени → ↓ транспорт ЖК в матрикс митохондрий → ↓ ЖК в матриксе → ↓ β-окисление ЖК

    Биосинтез ВЖК. Строение пальмитатсинтазного комплекса. Химизм и регуляция процесса.

Синтез пальмитиновой кислоты

Образование малонил-КоА

Первая реакция синтеза ЖК - превращение ацетил-КоА в малонил-КоА. Это регуляторная реакция в синтезе ЖК катализируется ацетил-КоА-карбоксилазой.

Ацетил-КоА-карбоксилаза состоит из нескольких субъединиц, содержащих биотин.

Реакция протекает в 2 стадии:

1)​ СО 2 + биотин + АТФ → биотин-СООН + АДФ + Фн

2)​ ацетил-КоА + биотин-СООН → малонил-КоА + биотин

Ацетил-КоА-карбоксилаза регулируется несколькими способами:

3)​ Ассоциация/диссоциация комплексов субъединиц фермента. В неактивной форме ацетил-КоА-карбоксилаза представляет собой комплексы, состоящих из 4 субъединиц. Цитрат стимулирует объединение комплексов, в результате чего активность фермента увеличивается. Пальмитоил-КоА вызывает диссоциацию комплексов и снижение активности фермента;

2)​ Фосфорилирование/дефосфорилирование ацетил-КоА-карбоксилазы. Глюкагон или адреналин через аденилатциклазную систему стимулируют фосфорилирование субъединиц ацетил-КоА карбоксилазы, что приводит к ее инактивации. Инсулин активирует фосфопротеинфосфатазу, ацетил-КоА карбоксилаза дефосфорилируется. Затем под действием цитрата происходит полимеризация протомеров фермента, и он становится активным;

3)​ Длительное потребление богатой углеводами и бедной липидами пищи приводит к увеличению секреции инсулина, который индукцирует синтез ацетил-КоА-карбоксилазы, пальмитатсинтазы, цитратлиазы, изоцитратдегидрогеназы и ускоряет синтез ЖК и ТГ. Голодание или богатая жирами пища приводит к снижению синтеза ферментов и, соответственно, ЖК и ТГ.

Образование пальмитиновой кислоты

После образования малонил-КоА синтез пальмитиновой кислоты продолжается на мультиферментном комплексе - синтазе жирных кислот (пальмитоилсинтетазе) .

Пальмитоилсинтаза - это димер, состоящий из двух идентичных полипептидных цепей. Каждая цепь имеет 7 активных центров и ацилпереносящий белок (АПБ). В каждой цепи есть 2 SH-гpyппы: одна SH-гpyппa принадлежит цистеину, другая - остатку фосфопантетеиновой кислоты. SH-группа цистеина одного мономера расположена рядом с SH-группой 4-фосфопантетеината другого протомера. Таким образом, протомеры фермента расположены «голова к хвосту». Хотя каждый мономер содержит все каталитические центры, функционально активен комплекс из 2 протомеров. Поэтому реально синтезируются одновременно 2 ЖК.

Этот комплекс последовательно удлиняет радикал ЖК на 2 атома С, донором которых служит малонил-КоА.

Реакции синтеза пальмитиновой кислоты

1)​ Перенос ацетила с КоА на SH-группу цистеина ацетилтрансацилазным центром;

2)​ Перенос малонила с КоА на SH-группу АПБ малонилтрансацилазным центром;

3)​ Кетоацилсинтазным центром ацетильная группа конденсируется с малонильной с образованием кетоацила и выделением СО 2 .

4)​ Кетоацил восстанавливается кетоацил-редуктазой до оксиацила;

5)​ Оксиацил дегидратируется гидратазой в еноил;

6)​ Еноил восстанавливается еноилредуктазой до ацила.

В результате первого цикла реакций образуется ацил с 4 атомами С (бутирил). Далее бутирил переносится из позиции 2 в позицию 1 (где находился ацетил в начале первого цикла реакций). Затем бутирил подвергается тем же превращениям и удлиняется на 2 атома С (от малонил-КоА).

Аналогичные циклы реакций повторяются до тех пор, пока не образуется радикал пальмитиновой кислоты, который под действием тиоэстеразного центра гидролитически отделяется от ферментного комплекса, превращаясь в свободную пальмитиновую кислоту.

Суммарное уравнение синтеза пальмитиновой кислоты из ацетил-КоА и малонил-КоА имеет следующий вид:

CH 3 -CO-SKoA + 7 HOOC-CH 2 -CO-SKoA + 14 НАДФН 2 → C 15 H 31 COOH + 7 СО 2 + 6

Н 2 О + 8 HSKoA + 14 НАДФ +

Синтез ЖК из пальмитиновой и других ЖК

Удлинение ЖК в элонгазных реакциях

Удлинение ЖК называется элонгацией. ЖК могут синтезироваться в результате удлинение в ЭПР пальмитиновой кислоты и других более длинных ЖК. Для каждой длины ЖК существуют свои элонгазы. Последовательность реакций аналогична синтезу пальмитиновой кислоты, однако в данном случае синтез идет не на АПБ, а на КоА. Основной продукт элонгации в печени - стеариновая кислота. В нервных тканях образуются ЖК с длинной цепью (С=20-24), необходимые для синтеза сфинголипидов.

Синтез ненасыщенных ЖК в десатуразных реакциях

Включение двойных связей в радикалы ЖК называется десатурацией. Десатурация ЖК происходит в ЭПР в монооксигеназных реакциях, катализируемых десатуразами.

Стеароил-КоА-десатураза – интегральный фермент, содержит негеминовое железо. Катализирует образование 1 двойной связи между 9 и 10 атомами углерода в ЖК. Стеароил-КоА-десатураза переносит электроны с цитохрома b 5 на 1 атом кислород, при участии протонов этот кислород образует воду. Второй атом кислорода включается стеариновую кислоту с образованием её оксиацила, который дегидрируется до олеиновой кислоты.

Десатуразы ЖК, имеющиеся в организме человека, не могут образовывать двойные связи в ЖК дистальнее девятого атома углерода, поэтому ЖК семейства ω-3 и ω-6 не синтезируются в организме, являются незаменимыми и обязательно должны поступать с пищей, так как выполняют важные регуляторные функции. Основные ЖК, образующиеся в организме человека в результате десатурации - пальмитоолеиновая и олеиновая.

Синтез α-гидрокси ЖК

В нервной ткани происходит синтез и других ЖК - α-гидроксикислот. Оксидазы со смешанными функциями гидроксилируют С 22 и С 24 кислоты с образованием цереброновой кислоты обнаруживаемой только в липидах мозга.

Францем Кноопом было выдвинуто предположение, что окисление молекулы жирной кислоты в тканях организма происходит в β-положении. В результате от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты со стороны карбоксильной группы .

Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот .

Метаболические процессы

β-Окисление представляет собой последовательность процессов:

  • Активацию жирных кислот, происходящую в цитоплазме клетки с образованием ацила-CoA
  • Транспортировку ацила-CoA через двойную мембрану митохондрии посредством карнитина (трансмембранный перенос)
  • Внутримитохондриальное β-окисление (происходит в матриксе).

Активация жирных кислот

Жирные кислоты, которые образовались в клетке путём гидролиза триацилглицеридов или поступившие в неё из крови должны быть активированы, так как сами по себе они являются метаболическими инертными веществами, и вследствие этого не могут быть подвержены биохимическим реакциям, включая и окисление. Процесс их активирования происходит в цитоплазме при участии ATP , кофермента A (HS-СoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-CoA-синтетазой жирных кислот с длинной цепью (Long-chain-fatty-acid-CoA ligase , КФ ), процесс является эндергоническим , т.е. протекает за счёт использования энергии гидролиза молекулы ATP :

texvc не найден; См. math/README - справку по настройке.): \mathsf{R-COOH + ATP + CoA-SH \xrightarrow {Mg^{2+}} R-COS-CoA + ADP + H_4P_4O_7}.

Ацил-CоА-синтетазы находятся как в цитоплазме , так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к жирным кислотам с различной длиной углеводородной цепи. Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут проникать в матрикс митохондрий путём диффузии . Активация этих жирных кислот происходит в матриксе митохондрий .

Жирные кислоты с длинной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активируются ацил-CоА-синтетазами, расположенными на внешней стороне внешней мембраны митохондрий.

Выделившийся в ходе реакции пирофосфат гидролизуется ферментом пирофосфатазой (КФ ):

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{H_4P_2O_7 + H_2O \rightarrow 2H_3PO_4}.

При этом происходит сдвиг равновесия реакции в сторону образования ацил-СоА .

Поскольку процесс активации жирных кислот происходит в цитоплазме, то далее необходим транспорт ацил-СоА через мембрану внутрь митохондрии.

Транспортировка жирных кислот через митохондриальную мембрану

Транспортировка жирных кислот с длинной цепью через плотную митохондриальную мембрану осуществляется посредством карнитина . В наружной мембране митохондрий находится фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I , CPT1, КФ ), катализирующий реакцию с образованием ацилкарнитина (ацильная группа переносится с атома серы CoA на гидроксильную группу карнитина с образованием ацилкарнитина (карнитин-СOR)), который диффундирует через внутреннюю митохондриальную мембрану :

R-CO~SCoA + карнитин ↔ карнитин-COR + CoA-SH

Образовавшийся ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью фермента карнитин-ацилкарнитин-транслоказы (CACT) .

После прохождения ацилкарнитина (карнитин-СOR) через мембрану митохондрии происходит обратная реакция - расщепление ацилкарнитина при участии CoA-SH и фермента митохондриальной карнитинацил-СоА-трансферазы или карнитинацилтрансферазы II (карнитин-пальмитоилтрансфераза II , CPT2, КФ ):

CoA-SH + карнитин-COR ↔ R-CO~SCoA + карнитин

Таким образом, ацил-СоА становится доступным для ферментов β-окисления. Свободный карнитин возвращается на цитоплазматическую сторону внутренней мембраны митохондрии той же транслоказой .

После этого ацил-СоА включается в реакции β-окисления.

Процесс трансмембранного переноса жирных кислот может ингибироваться малонил-СоА .

Внутримитохондриальное окисление жирных кислот

В матриксе митохондрии происходит окисление жирных кислот в цикле Кнооппа-Линена. В нём участвуют четыре фермента, которые последовательно действуют на ацил-CоА. Конечным метаболитом данного цикла является ацетил-CoA . Сам процесс состоит из четырёх реакций.

Наименование реакции Схема реакции Фермент образовавшийся продукт
Дегидрирование активированной жирной кислоты (ацил-CоА) . β-Окисление начинается с дегидрирования ацил-CоА FAD-зависимой ацил-СоА дегидрогеназой жирных кислот с длиной цепью (LCAD) с образованием двойной связи между α- и β-атомами углерода (С-2 и С-3) в продукте реакции - еноил-СоА. Восстановленный в этой реакции кофермент FADH 2 передаёт атомы водорода в ЦПЭ на кофермент Q . В результате синтезируются 2 молекулы ATФ . Ацил-СоА-дегидрогеназа (КФ ) Транс-Δ 2 -еноил-CоА
Реакция гидратации . Ненасыщенный ацил-CоА (еноил-CоА) при участии фермента еноил-CоА-гидратазы присоединяет молекулу воды . В результате образуется β-гидроксиацил-CоА. Реакция обратима и стереоспецифична, образовавшийся продукт имеет L-форму. Еноил-CоА-гидратаза (КФ ) L-β-гидроксиацил-CоА
NAD + - зависимое окисление или вторая реакция дегидрирования . Образовавшийся L-β-гидроксиацил-CоА затем окисляется. Реакция катализируется NAD + -зависимой дегидрогеназой. L-β-гидроксиацетилдегидрогеназа (КФ ) L-β-ацетил-СоА
Тиолазная реакция . В этой реакции β-кетоацил-CоА взаимодействует с коферментом А . В результате происходит расщепление β-кетоацил-CоА и образуется укороченный на два углеродных атома ацил-СоА и двууглеродный фрагмент в виде ацетил-CоА. Данная реакция катализируется ацетил-CоА-ацилтрансферазой (или β-кетотиолазой). β-Кетотиолаза (КФ ) Ацил-CоА и Ацетил-CoА

Образовавшийся ацетил-CоА подвергается окислению в цикле Кребса, а ацил-CоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-CоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-CоА. FADH 2 и NADH·H поступают прямо в дыхательную цепь .

Для полной деградации длинноцепочечной жирной кислоты цикл должен многократно повторяться, так, например, для стеарил-CоА (С 17 Н 35 СО~SCoA) необходимы восемь циклов .

Особенности окисления жирных кислот с нечётным числом углеродных атомов

В результате окисления жирных кислот с нечётным числом углеродных атомов образуются не только ацетил-CоА, FAD H 2 и NADH , но и одна молекула пропионил-CоА (C 2 H 5 -CO~SCoA).

Окисление ненасыщенных жирных кислот

При окислении жирных кислот, имеющих две (-С=C-C-C=C-) и более ненасыщенные связи, требуется ещё один дополнительный фермент β-гидроксиацил-СоА-эпимераза (КФ ).

Скорость окисления ненасыщенных жирных кислот много выше, чем насыщенных, что обусловлено наличием двойных связей. Например, если взять за эталон скорость окисления насыщенной стеариновой кислоты , то скорость окисления олеиновой в 11, линолевой в 114, линоленовой в 170, а арахидоновой почти в 200 раз выше, чем стеариновой .

Бета-окисление у растений

Энергетический баланс процесса

В результате переноса электронов по ЦПЭ от FAD H 2 и NADH синтезируется по 5 молекул ATP (2 от FADH 2 , и 3 от NADH). В случае окисления пальмитиновой кислоты проходит 7 циклов β-окисления (16/2-1=7), что ведёт к образованию 5 7=35 молекул ATP. В процессе β-окисления пальмитиновой кислоты образуется n молекул ацетил-CoA, каждая из которых, при полном сгорании в цикле трикарбоновых кислот, даёт 12 молекул ATP, а 8 молекул дадут 12 8 = 96 молекул ATP.

Таким образом, всего при полном окислении пальмитиновой кислоты образуется 35+96=131 молекула ATP. Однако с учётом одной молекулы ATP , которая гидролизуется до AMP , то есть тратятся 2 макроэргические связи или две ATP, в самом начале на процесс активирования (образования пальмитоил-CоА) общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131-2=129 молекул .

Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{C_{15}H_{31}-SCoA + 7FAD^+ + 7NAD^+ + 7H_2O + 7HS-CoA \rightarrow 8CH_3CO-SCoA + 7FADH_2 + 7NADH}

Формула для расчёта общего количества ATP которые генерируются в результате процесса β-окисления:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): { \left [(\frac{n}{2}\cdot 12)+((\frac{n}{2}-1)\cdot5) \right ]}

где n - количество атомов углерода в молекуле жирной кислоты.

Энергетический расчёт β-окисления для некоторых жирных кислот представлен в виде таблицы.

Жирная кислота Кол-во молекул ATP генерируемых на 1 молекулу жирной кислоты Кол-во затраченных молекул ATP Общий энергетический выход молекул ATP
Каприловая кислота C 7 H 15 COOH 63 2 63-2=61
Лауриновая кислота С 11 Н 23 COOH 97 2 97-2=95
Миристиновая кислота С 13 Н 27 СООН 102 2 102-2=100
Пентадециловая кислота С 14 Н 29 СООН 110,5 2 110,5-2=108,5
Пальмитиновая кислота С 15 Н 31 СООН 131 2 131-2=129
Маргариновая кислота С 16 Н 33 СООН 139,5 2 139,5-2=137,5
Стеариновая кислота С 17 Н 35 СООН 148 2 148-2=146
Арахиновая кислота С 19 Н 39 СООН 165 2 165-2=163

Внемитохондриальное окисление жирных кислоты

Помимо β-окисления жирных кислот, происходящего в митохондриях существует и внемитохондриальное окисление. Жирные кислоты, имеющие бóльшую длину цепи (от С 20), не могут быть окислены в митохондриях из-за наличия плотной двойной мембраны, которая воспрепятствует процессу переноса их через межмембранное пространство. Поэтому окисление длиноцепочечных жирных кислот (С 20 -С 22 и более) происходит в пероксисомах . В пероксисомах процесс β-окисления жирных кислот протекает в модифицированном виде. Продуктами окисления в данном случае являются ацетил-CoA, октаноил-CоА и пероксид водорода Н 2 О 2 . Ацетил-CоА образуется на стадии, катализируемой FAD-зависимой дегидрогеназой. Ферменты пероксисом не атакуют жирные кислоты с короткими цепями, и процесс β-окисления останавливается при образовании октаноил-CоА.

Данный процесс не сопряжён с окислительным фосфорилированием и генерацией ATP и поэтому октаноил-CоА и ацетил-CоА переходят с CоА на карнитин и направляются в митохондрии, где окисляются с образованием ATP .

Активация пероксисомального β-окисления происходит при избыточном содержании в потребляемой пищи жирных кислот начиная с С 20 , а также при приёме гиполипидемических лекарственных препаратов.

Регуляция

Скорость регуляции процесса β-окисления включает несколько факторов:

Скорость β-окисления зависит также от активности фермента карнитин-пальмитоилтрансферазы I (CPTI). В печени этот фермент ингибируется малонил-CoA, веществом, образующимся при биосинтезе жирных кислот .

В мышцах карнитин-пальмитоилтрансфераза I (CPTI) также ингибируется малонил-CoA. Хотя мышечная ткань не синтезирует жирные кислоты, в ней имеется изофермент ацетил-CoA-карбоксилазы, синтезирующий малонил-CoA для регуляции β-окисления. Данный изофермент фосфорилируется протеинкиназой А, которая активируется в клетках под действием адреналина , и AMP-зависимой протеинкиназой и таким образом происходит его ингибирование; концентрация малонил-CoA снижается. Вследствие этого, при физической работе, когда в клетке появляется AMP , под действием адреналина активируется β-окисление, однако, его скорость зависит ещё и от доступности кислорода. Поэтому β-окисление становится источником энергии для мышц только через 10-20 минут после начала физической нагрузки (так называемые аэробные нагрузки), когда приток кислорода к тканям увеличивается .

Нарушения процесса

Дефекты карнитиновой транспортной системы

Дефекты карнитиновой транспортной системы проявляются в ферментопатиях и дефицитных состояний карнитина в организме человека.

Дефицитные состояния карнитина

Наиболее распространены дефицитные состояния, связанные с потерей карнитина во время некоторых состояний организма:

Признаками и симптомами недостатка карнитина являются приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса β-окисления жирных кислот, уменьшение образования кетоновых тел, сопровождающееся повышением содержания свободных жирных кислот (СЖК) в плазме крови, мышечная слабость (миастения), а также накопление липидов .

Ферментопатии

Генетические нарушения ацил-CoA-дегидрогеназ жирных кислот средней цепи

В митохондриях имеется 3 вида ацил-CoA-дегидрогеназ , окисляющих жирные кислоты с длинной, средней или короткой цепью радикала. Жирные кислоты по мере укорочения радикала в процессе β-окисления могут последовательно окисляться этими ферментами. Генетический дефект дегидрогеназы жирных кислот со средней длиной радикала (КФ ) - MCADD (сокр. от М edium-c hain a cyl-CoA d ehydrogenase d eficiency) наиболее распространён по сравнению с другими наследственными заболеваниями - 1:15 000. Частота дефектного гена ACADM , кодирующего ацил-CoA-дегидрогеназы жирных кислот со средней длиной цепи, среди европейской популяции - 1:40. Это аутосомно-рецессивное заболевание, возникающее в результате замены нуклеотида Т (тимин) на А (аденин) в 985-й позиции гена . Проявляется в накоплении жирных кислот средней цепи (особенно каприловой) и их производных в крови и вторичным дефицитом карнитина. Характерными симптомами являются приступы рвоты , летаргическое состояние , сильнейшая некетотическая гипогликемия, вызванная обильной утилизацией глюкозы (особенно опасна для новорожденных), может развиться кома и возможен летальный исход. Большую опасность болезнь представляет у детей, так как среди них наблюдается самая большая летальность (до 60%) .

Генетические нарушения ацил-CoA-дегидрогеназ жирных кислот с очень длинной углеродной цепью

Дикарбоновая ацидурия

Дикарбоновая ацидурия заболевание, связанное с повышенной экскрецией С 6 -С 10 -дикарбоновых кислот и возникающей на этом фоне гипогликемии , однако, не связанная с повышением содержания кетоновых тел. Причиной данного заболевания является MCADD. При этом нарушается β-окисление и усиливается ω-окисление длинноцепочечных жирных кислот, которые укорачиваются до среднецепочечных дикарбоновых кислот , выводимых из организма .

Синдром Цельвегера

Синдром Цельвегера или цереброгепаторенальный синдром, редкое наследственное заболевание описано американским педиатром Хансом Цельвегером (H.U. Zellweger ), которое проявляется в отсутствии пероксисом во всех тканях организма. Вследствие этого в организме, особенно в мозгу накапливаются полиеновые кислоты (С 26 -С 38), представляющие собой длиноцепочечные жирные кислоты . Примерная заболеваемость нарушениями биогенеза пероксисом спектра синдрома Цельвегера составляет 1:50 000 новорождённых в США и 1:500 000 новорождённых в Японии. Для синдрома характерны: пренатальная задержка роста; мышечная гипотония; затруднение сосания; арефлексия; долихоцефалия; высокий лоб; круглое плоское лицо; одутловатые веки; гипертелоризм; монголоидный разрез глаз; катаракта ; пигментная ретинопатия или дисплазия зрительного нерва; колобома радужки; низко расположенные ушные раковины; микрогнатия ; расщелина неба; латеральное или медиальное искривление пальцев; поражение печени (гепатомегалия (увеличение объёма печени), дисгинезия внутрипеченочных протоков, цирроз печени); поликистоз почек; нередко - тяжёлые, несовместимые с жизнью аномалии лёгких и пороки сердца; задержка психомоторного развития; судороги ; стойкая желтуха. При патоморфологическом исследовании выявляют задержку миелинизации нейронов; накопление липидов в астроцитах; в печени, почках и мозге уменьшено содержание плазмогенов; в клетках печени и других тканях организма снижено количество пероксисом, большинство пероксисомных ферментов неактивны. В крови повышена активность трансаминаз и отмечается стойкая гипербилирубинемия . Нарушения биогенеза пероксисом обусловлены мутациями в одном из 12 генов PEX , кодирующих пероксины. Мутации в этих генах ведут к аномалиям биогенеза пероксисом. Все варианты синдрома Цельвегера наследуются по аутосомно-рецессивному типу .

Ямайская рвотная болезнь

Специфическая болезнь, характеризуется сильнейшей интоксикацией, сопровождающаяся рвотой , гиповолемическим шоком, конвульсиями , гипогликемией , в тяжёлой форме может наступить кома и смертельный исход. Вызывается при употреблении незрелых либо сырых плодов Аки или блигией вкусной (Blighia sapida ), в состав которых входит производное α-аминопропановой кислоты , токсин - гипоглицин . В результате метаболизма гипоглицин инактивирует ацил-CoA-дегидрогеназу, впоследствии чего ингибируется процесс β-окисления . В присутствии гипоглицина происходит накопление главным образом бутирил-CoA, который гидролизуется до свободной масляной кислоты (бутирата). Масляная кислота в избытке попадает в кровь , косвенно вызывая гипогликемию .

Напишите отзыв о статье "Бета-окисление"

Примечания

  1. Строев Е. А. Биологическая химия: Учебник для фармац. ин-тов и фармац. фак. мед. ин-тов. - М .: Высшая школа, 1986. - 479 с.
  2. Е.С. Северин. Биохимия. - М: ГЭОТАР-МЕД, 2004. - 779 с. - ISBN 5-9231-0254-4.
  3. Березов Т. Т., Коровкин Б. Ф. Биологическая химия. - М .: Медицина, 1998. - 704 с. - ISBN 5-225-02709-1.
  4. , p. 943.
  5. Knoop, Franz (1904). «Der Abbau aromatischer Fettsäuren im Tierkörper». Beitr Chem Physiol Pathol 6 : 150–162. Проверено 2 March 2015.
  6. Houten S. M. , Wanders R. J. (англ.) // Journal of inherited metabolic disease. - 2010. - Vol. 33, no. 5 . - P. 469-477. - DOI :. - PMID 20195903.
  7. Р.Марри, Д.Греннер, П. Мейес, В. Родуэлл. Биохимия человека. - М .: Мир, 1993. - Т. I. - 384 с. - ISBN 5-03-001774-7.
  8. Нельсон Д., Кокс М. Основы биохимии Ленинджера. - М .: БИНОМ, 2011. - Т. II.
  9. Кольман. Я., Рём К. Г. Наглядная биохимия. - М .: Мир, 2011. - 469 с. - ISBN 5-03-003304-1.
  10. Singh I (February 1997). «Biochemistry of peroxisomes in health and disease». Mol. Cell. Biochem. 167 (1-2): 1–29. DOI :. PMID 9059978.
  11. Биологическая химия с упражнениями и задачами / Под ред. С.Е. Северина. - М .: ГЭОТАР-Медиа, 2011. - 624 p. - ISBN 9785970417553.
  12. Handig I et al: Inheritance of the S113L mutation within an inbred family with carnitine palmitoyltransferase enzyme deficiency. Hum. Genet. 97: 291-293, 1996. PMID 8786066.
  13. . - Москва: РОССИЙСКОЕ ОБЩЕСТВО МЕДИЦИНСКИХ ГЕНЕТИКОВ, 2013. - 18 с.
  14. P. Bowen, C. S. N. Lee, H. U. Zellweger, R. Lindenburg. A familial syndrome of multiple congenital defects. Bulletin of the Johns Hopkins Hospital, 1964; 114: 402.
  15. OMIM

Литература

  • Д.Мецлер. Биохимия. - М .: Мир, 1980. - Т. 2. - 609 p.
  • Нельсон Д., Кокс М. Основы биохимии Ленинджера. - М .: Бином, 2014. - Т. II. - 636 p. - 1700 экз. - ISBN 978-5-94774-366-1.

См. также

Отрывок, характеризующий Бета-окисление

– Ну что – пошли, «девочка Лия»? – уже с большим нетерпением спросила я.
Мне очень хотелось посмотреть эти, другие, «этажи» пока ещё хватало на это сил. Я уже успела заметить, какая большая разница была между этим, в котором мы находились сейчас, и «верхним», Стеллиным «этажом». Поэтому, было очень интересно побыстрее «окунуться» в очередной незнакомый мир и узнать о нём, по-возможности, как можно больше, потому что я совсем не была уверена, вернусь ли сюда когда-то ещё.
– А почему этот «этаж» намного плотнее чем предыдущий, и более заполнен сущностями? – спросила я.
– Не знаю... – пожала своими хрупкими плечиками Стелла. – Может потому, что здесь живут просто лишь хорошие люди, которые никому не делали зла, пока жили в своей последней жизни. Поэтому их здесь и больше. А наверху живут сущности, которые «особенные» и очень сильные... – тут она засмеялась. – Но я не говорю про себя, если ты это подумала! Хотя бабушка говорит, что моя сущность очень старая, больше миллиона лет... Это ужас, как много, правда? Как знать, что было миллион лет тому назад на Земле?.. – задумчиво произнесла девочка.
– А может быть ты была тогда совсем не на Земле?
– А где?!.. – ошарашено спросила Стелла.
– Ну, не знаю. Разве ты не можешь посмотреть?– удивилась я.
Мне тогда казалось, что уж с её-то способностями возможно ВСЁ!.. Но, к моему большому удивлению, Стелла отрицательно покачала головкой.
– Я ещё очень мало умею, только то, что бабушка научила. – Как бы сожалея, ответила она.
– А хочешь, я покажу тебе своих друзей? – вдруг спросила я.
И не дав ей подумать, развернула в памяти наши встречи, когда мои чудесные «звёздные друзья» приходили ко мне так часто, и когда мне казалось, что ничего более интересного уже никак не может быть...
– О-ой, это же красота кака-ая!... – с восторгом выдохнула Стелла. И вдруг, увидев те же самые странные знаки, которые они мне показывали множество раз, воскликнула: – Смотри, это ведь они учили тебя!.. О-о, как это интересно!
Я стояла в совершенно замороженном состоянии и не могла произнести ни слова... Учили???... Неужели все эти года я имела в своём же мозгу какую-то важную информацию, и вместо того, чтобы как-то её понять, я, как слепой котёнок, барахталась в своих мелких попытках и догадках, пытаясь найти в них какую-то истину?!... А это всё уже давным-давно у меня было «готовеньким»?..
Даже не зная, чему это меня там учили, я просто «бурлила» от возмущения на саму себя за такую оплошность. Подумать только, у меня прямо перед носом раскрыли какие-то «тайны», а я ничего и не поняла!.. Наверное, точно не тому открыли!!!
– Ой, не надо так убиваться! – засмеялась Стелла. – Покажешь бабушке и она тебе объяснит.
– А можно тебя спросить – кто же всё-таки твоя бабушка? – стесняясь, что вхожу в «частную территорию», спросила я.
Стелла задумалась, смешно сморщив свои носик (у неё была эта забавная привычка, когда она о чём-то серьёзно думала), и не очень уверенно произнесла:
– Не знаю я... Иногда мне кажется, что она знает всё, и что она очень, очень старая... У нас было много фотографий дома, и она там везде одинаковая – такая же, как сейчас. Я никогда не видела, какой она была молодой. Странно, правда?
– И ты никогда не спрашивала?..
– Нет, я думаю, она мне сказала бы, если бы это было нужно... Ой, посмотри-ка! Ох, как красиво!.. – вдруг неожиданно в восторге запищала малышка, показывая пальчиком на странные, сверкающие золотом морские волны. Это конечно же было не море, но волны и в правду были очень похожи на морские – они тяжело катились, обгоняя друг друга, как бы играясь, только на месте слома, вместо снежно-белой морской пены, здесь всё сплошь сверкало и переливалось червонным золотом, распыляя тысячами прозрачные золотистые брызги... Это было очень красиво. И мы, естественно, захотели увидеть всю эту красоту поближе...
Когда мы подошли достаточно близко, я вдруг услышала тысячи голосов, которые звучали одновременно, как бы исполняя какую-то странную, не похожую ни на что, волшебную мелодию. Это была не песня, и даже не привычная нам музыка... Это было что-то совершенно немыслимое и неописуемое... но звучало оно потрясающе.
– Ой, это же мыслящее море! О, это тебе точно понравится! – весело верещала Стелла.
– Оно мне уже нравится, только не опасно ли это?
– Нет, нет, не беспокойся! Это просто для успокоения «потерянных» душ, которым всё ещё грустно после прихода сюда... Я слушала его здесь часами... Оно живое, и для каждой души «поёт» другое. Хочешь послушать?
И я только сейчас заметила, что в этих золотых, сверкающих волнах плещутся множество сущностей... Некоторые из них просто лежали на поверхности, плавно покачиваясь на волнах, другие ныряли в «золото» с головой, и подолгу не показывались, видимо, полностью погружаясь в мысленный «концерт» и совершенно не спеша оттуда возвращаться...
– Ну, что – послушаем? – нетерпеливо подталкивала меня малышка.
Мы подошли вплотную... И я почувствовала чудесно-мягкое прикосновение сверкающей волны... Это было нечто невероятно нежное, удивительно ласковое и успокаивающее, и в то же время, проникающее в самую «глубинку» моей удивлённой и чуть настороженной души... По моей стопе пробежала, вибрируя миллионами разных оттенков, тихая «музыка» и, поднимаясь вверх, начала окутывать меня с головой чем-то сказочно красивым, чем-то, не поддающимся никаким словам... Я чувствовала, что лечу, хотя никакого полёта наяву не было. Это было прекрасно!.. Каждая клеточка растворялась и таяла в набегающей новой волне, а сверкающее золото вымывало меня насквозь, унося всё плохое и грустное и оставляя в душе только чистый, первозданный свет...
Я даже не почувствовала, как вошла и окунулась в это сверкающее чудо почти с головой. Было просто невероятно хорошо и не хотелось никогда оттуда выходить...
– Ну, всё, хватит уже! Нас задание ждёт! – ворвался в сияющую красоту напористый Стеллин голосок. – Тебе понравилось?
– О, ещё как! – выдохнула я. – Так не хотелось выходить!..
– Вот, вот! Так и «купаются» некоторые до следующего воплощения... А потом уже больше сюда не возвращаются...
– А куда же они идут? – удивилась я.
– Ниже... Бабушка говорит, что здесь место тоже надо себе заслужить... И кто всего лишь ждёт и отдыхает, тот «отрабатывает» в следующем воплощении. Думаю, это правда...
– А что там – ниже? – заинтересованно спросила я.
– Там уже не так приятно, поверь мне. – Лукаво улыбнулась Стелла.
– А это море, оно только одно или таких здесь много?
– Ты увидишь... Оно всё разное – где море, где просто «вид», а где просто энергетическое поле, полное разных цветов, ручейков и растений, и всё это тоже «лечит» души и успокаивает... только не так-то просто этим пользоваться – надо сперва заслужить.
– А кто не заслужит? Разве они живут не здесь?– не поняла я.
– Живут-то живут, но уже не так красиво... – покачала головой малышка. – Здесь так же, как на Земле – ничто не даётся даром, только вот ценности здесь совсем другие. А кто не хочет – тому и достаётся всё намного более простое. Всю эту красоту нельзя купить, её можно только заслужить...
– Ты говоришь сейчас точно как твоя бабушка, будто ты выучила её слова...– улыбнулась я.
– Так оно и есть! – вернула улыбку Стелла. – Я многое стараюсь запомнить, о чём она говорит. Даже то, что пока ещё не совсем понимаю... Но ведь пойму когда-нибудь, правда же? А тогда, возможно, уже некому будет научить... Вот и поможет.
Тут, мы вдруг увидели весьма непонятную, но очень привлекательную картинку – на сияющей, пушисто-прозрачной голубой земле, как на облаке, стояло скопление сущностей, которые постоянно сменяли друг друга и кого-то куда-то уводили, после опять возвращаясь обратно.
– А это, что? Что они там делают? – озадачено спросила я.
– О, это они всего лишь помогают приходить «новичкам», чтобы не страшно было. Это где приходят новые сущности. – Спокойно сказала Стелла.
– Ты уже видела всё это? А можем мы посмотреть?
– Ну, конечно! – и мы подошли поближе...
И я увидела, совершенно захватывающее по своей красоте, действие... В полной пустоте, как бы из ничего, вдруг появлялся прозрачный светящийся шар и, как цветок, тут же раскрывался, выпуская новую сущность, которая совершенно растерянно озиралась вокруг, ещё ничего не понимая... И тут же, ждущие сущности обнимали «новоприбывшего» сгустком тёплой сверкающей энергии, как бы успокаивая, и сразу же куда-то уводили.
– Это они приходят после смерти?.. – почему-то очень тихо спросила я.
Стелла кивнула и грустно ответила:
– Когда пришла я, мы ушли на разные «этажи», моя семья и я. Было очень одиноко и грустно... Но теперь уже всё хорошо. Я к ним сюда много раз ходила – они теперь счастливы.
– Они прямо здесь, на этом «этаже»?.. – не могла поверить я.
Стелла опять грустно кивнула головкой, и я решила, больше не буду спрашивать, чтобы не бередить её светлую, добрую душу.
Мы шли по необычной дороге, которая появлялась и исчезала, по мере того, как мы на неё ступали. Дорога мягко мерцала и как будто вела, указывая путь, будто зная, куда нам надо идти... Было приятное ощущение свободы и лёгкости, как если бы весь мир вокруг вдруг стал совершенно невесомым.
– А почему эта дорога указывает нам, куда идти? – не выдержала я.
– Она не указывает, она помогает. – Ответила малышка. – Здесь всё состоит из мысли, забыла? Даже деревья, море, дороги, цветы – все слышат, о чём мы думаем. Это по-настоящему чистый мир... наверное, то, что люди привыкли называть Раем... Здесь нельзя обмануть.
– А где же тогда Ад?.. Он тоже существует?
– О, я обязательно тебе покажу! Это нижний «этаж» и там ТАКОЕ!!!... – аж передёрнула плечиками Стелла, видимо вспомнив что-то не очень приятное.
Мы всё ещё шли дальше, и тут я заметила, что окружающее стало понемножечку меняться. Прозрачность куда-то начала исчезать, уступая место, намного более «плотному», похожему на земной, пейзажу.
– Что происходит, где мы? – насторожилась я.
– Всё там же. – Совершенно спокойно ответила малышка. – Только мы сейчас уже находимся в той части, что попроще. Помнишь, мы только что говорили об этом? Здесь в большинстве своём те, которые только что пришли. Когда они видят такой, похожий на их привычный, пейзаж – им легче воспринимать свой «переход» в этот, новый для них, мир... Ну и ещё, здесь живут те, которые не хотят быть лучше, чем они есть, и не желают делать ни малейших усилий, чтобы достичь чего-то выше.
– Значит, этот «этаж» состоит как бы из двух частей?– уточнила я.
– Можно сказать и так. – Задумчиво ответила девчушка, и неожиданно перешла на другую тему – Что-то никто здесь не обращает на нас никакого внимания. Думаешь, их здесь нет?
Оглядевшись вокруг, мы остановились, не имея ни малейшего понятия, что предпринять дальше.
– Рискнём «ниже»? – спросила Стелла.
Я чувствовала, что малышка устала. Да и я тоже была очень далеко от своей лучшей формы. Но я была почти уверена, что сдаваться она никак не собирается, поэтому кивнула в ответ.
– Ну, тогда надо немного подготовиться... – закусив губу и серьёзно сосредоточившись, заявила воинственная Стелла. – Знаешь ли ты, как поставить себе сильную защиту?
– Вроде бы – да. Но я не знаю, насколько она будет сильная. – Смущённо ответила я. Мне очень не хотелось именно сейчас её подвести.
– Покажи, – попросила девочка.
Я поняла, что это не каприз, и что она просто старается мне помочь. Тогда я попробовала сосредоточиться и сделала свой зелёный «кокон», который я делала себе всегда, когда мне нужна была серьёзная защита.
– Ого!.. – удивлённо распахнула глазёнки Стелла. – Ну, тогда пошли.
На этот раз наш полёт вниз уже был далеко не таким приятным, как предыдущий... Почему-то очень сдавило грудь и тяжело было дышать. Но понемножку всё это как бы выровнялось, и я с удивлением уставилась на открывшийся нам, жутковатый пейзаж...
Тяжёлое, кроваво-красное солнце скупо освещало тусклые, фиолетово-коричневые силуэты далёких гор... По земле, как гигантские змеи, ползли глубокие трещины, из которых вырывался плотный, тёмно-оранжевый туман и, сливаясь с поверхностью, становился похожим на кровавый саван. Всюду бродили странные, будто неприкаянные, сущности людей, которые выглядели очень плотными, почти что физическими... Они то появлялись, то исчезали, не обращая друг на друга никакого внимания, будто никого кроме себя не видели и жили лишь в своём, закрытом от остальных, мире. Вдалеке, пока что не приближаясь, иногда появлялись тёмные фигуры каких-то чудовищных зверей. Ощущалась опасность, пахло жутью, хотелось бежать отсюда сломя голову, не поворачиваясь назад...
– Это мы прямо в Аду что ли? – в ужасе от увиденного, спросила я.
– Но ты же хотела посмотреть, как это выглядит – вот и посмотрела. – Напряжённо улыбаясь, ответила Стелла.
Чувствовалось, что она ожидает какую-то неприятность. Да и ничего другого, кроме неприятностей, здесь, по-моему, просто никак не могло быть...
– А ты знаешь, иногда здесь попадаются и добрые сущности, которые просто совершили большие ошибки. И если честно, мне их очень жалко... Представляешь – ждать здесь следующего своего воплощения?!. Жуть!
Нет, я никак не могла этого представить, да и не хотела. И уж этим же самым добром здесь ну никак не пахло.
– А ты ведь не права! – опять подслушала мои мысли малышка. – Иногда сюда и, правда, попадают очень хорошие люди, и за свои ошибки они платят очень дорого... Мне их, правда, жаль...
– Неужели ты думаешь, что наш пропавший мальчик тоже попал сюда?!. Уж он-то точно не успел ничего такого дурного совершить. Ты надеешься найти его здесь?.. Думаешь, такое возможно?
– Берегись!!! – вдруг дико завизжала Стелла.
Меня расплющило по земле, как большую лягушку, и я всего лишь успела почувствовать, как будто на меня навалилась огромная, жутко воняющая. гора... Что-то пыхтело, чавкало и фыркало, расточая омерзительный запах гнили и протухшего мяса. У меня чуть желудок не вывернуло – хорошо, что мы здесь «гуляли» только сущностями, без физических тел. Иначе у меня, наверняка, случились бы самые неприятные неприятности.....
– Вылезай! Ну, вылезай же!!! – пищала перепуганная девчушка.
Но, к сожалению, это было легче сказать, чем сделать... Зловонная туша навалилась на меня всей жуткой тяжестью своего огромного тела и уже, видимо, была готова полакомиться моей свеженькой жизненной силой... А у меня, как на зло, никак не получалось от него освободиться, и в моей сжатой страхом душе уже предательски начинала попискивать паника...
– Ну, давай же! – опять крикнула Стелла. Потом она вдруг ударила чудище каким-то ярким лучом и опять закричала: – Беги!!!
Я почувствовала, что стало немного легче, и изо всех сил энергетически толкнула нависшую надо мной тушу. Стелла бегала вокруг и бесстрашно била со всех сторон уже слабеющего ужастика. Я кое-как выбралась, по привычке тяжело хватая ртом воздух, и пришла в настоящий ужас от увиденного!.. Прямо передо мной лежала огромная шипастая туша, вся покрыта какой-то резко воняющей слизью, с огромным, изогнутым рогом на широкой, бородавчатой голове.
– Бежим! – опять закричала Стелла. – Он ведь ещё живой!..
Меня будто ветром сдуло... Я совершенно не помнила, куда меня понесло... Но, надо сказать, понесло очень быстро.
– Ну и бегаешь ты... – запыхавшись, чуть выговаривая слова, выдавила малышка.
– Ой, пожалуйста, прости меня! – устыдившись, воскликнула я. – Ты так закричала, что я с перепугу помчалась, куда глаза глядят...
– Ну, ничего, в следующий раз будем поосторожнее. – Успокоила Стелла.
У меня от такого заявления глаза полезли на лоб!..
– А что, будет ещё «следующий» раз??? – надеясь на «нет», осторожно спросила я.
– Ну конечно! Они ведь живут здесь! – дружески «успокоила» меня храбрая девчушка.
– А что же мы тогда здесь делаем?..
– Мы же спасаем кого-то, разве ты забыла? – искренне удивилась Стелла.
А у меня, видно, от всего этого ужаса, наша «спасательная экспедиция» полностью вылетела из головы. Но я тут же постаралась как можно быстрее собраться, чтобы не показать Стелле, что я по-настоящему очень сильно испугалась.
– Ты не думай, у меня после первого раза целый день косы дыбом стояли! – уже веселее сказала малышка.
Мне просто захотелось её расцеловать! Каким-то образом, видя что мне стыдно за свою слабость, она умудрилась сделать так, что я сразу же снова почувствовала себя хорошо.
– Неужели ты правда думаешь, что здесь могут находиться папа и братик маленькой Лии?.. – от души удивляясь, спросила её ещё раз я.
– Конечно! Их просто могли украсть. – Уже совсем спокойно ответила Стелла.
– Как – украсть? И кто?..
Но малышка не успела ответить... Из-за дремучих деревьев выскочило что-то похлеще, чем наш первый «знакомый». Это было что-то невероятно юркое и сильное, с маленьким, но очень мощным телом, посекундно выбрасывающее из своего волосатого пуза странную липкую «сеть». Мы даже не успели пикнуть, как обе в неё дружно попались... Стелла с перепугу стала похожа на маленького взъерошенного совёнка – её большие голубые глаза были похожи на два огромных блюдца, с выплесками ужаса посерединке.
Надо было срочно что-то придумать, но моя голова почему-то была совершенно пустая, как бы я не старалась что-то толковое там найти... А «паук» (будем дальше так его называть, за неимением лучшего) тем временем довольно тащил нас, видимо, в своё гнездо, готовясь «ужинать»...
– А где же люди? – чуть ли не задыхаясь, спросила я.
– О, ты же видела – людей здесь полно. Больше чем где-либо... Но они, в большинстве, хуже, чем эти звери... И они нам не помогут.
– И что же нам теперь делать? – мысленно «стуча зубами», спросила я.
– Помнишь, когда ты показала мне твоих первых чудищ, ты ударила их зелёным лучом? – уже опять вовсю озорно сверкая глазами, (опять же, быстрее меня очухавшись!), задорно спросила Стелла. – Давай – вместе?..
Я поняла, что, к счастью, сдаваться она всё ещё собирается. И решила попробовать, потому что терять нам всё равно было нечего...
Но ударить мы так и не успели, потому что паук в тот момент резко остановился и мы, почувствовав сильный толчок, со всего маху шлёпнулись на землю... Видимо, он притащил нас к себе домой намного раньше, чем мы предполагали...
Мы очутились в очень странном помещении (если конечно это можно было так назвать). Внутри было темно, и царила полная тишина... Сильно пахло плесенью, дымом и корой какого-то необычного дерева. И только время от времени слышались какие-то слабые звуки, похожие на стоны. Как будто бы у «страдавших» уже совсем не оставалось сил…
– Ты не можешь это как-то осветить? – я тихо спросила Стеллу.
– Я уже попробовала, но почему-то не получается... – так же шёпотом ответила малышка.
И сразу же прямо перед нами загорелся малюсенький огонёк.
– Это всё, что я здесь могу. – Огорчённо вздохнула девчушка
При таком тусклом, скупом освещении она выглядела очень усталой и как бы повзрослевшей. Я всё время забывала, что этому изумительному чудо-ребёнку было всего-то ничего – пять лет!.. Наверное, её такой временами серьёзный, недетский разговор или её взрослое отношение к жизни, или всё это вместе взятое, заставляло забывать, что в реальности она ещё совсем малюсенькая девочка, которой в данный момент должно было быть до ужаса страшно. Но она мужественно всё переносила, и даже ещё собиралась воевать...
– Смотри, кто это здесь? – прошептала малышка.
И вглядевшись в темноту, я увидела странные «полочки», на которых, как в сушилке, лежали люди.
– Мама?.. Это ты, мама??? – тихонько прошептал удивлённый тоненький голосок. – Как же ты нас нашла?
Я сначала не поняла, что ребёнок обращался ко мне. Начисто позабыв, для чего мы сюда пришли, я только тогда поняла, что спрашивают именно меня, когда Стелла сильно толкнула меня кулачком в бок.
– А мы же не знаем, как их зовут!.. – прошептала я.
– Лия, а ты что здесь делаешь? – прозвучал уже мужской голос.
– Тебя ищу, папочка. – Голоском Лии мысленно ответила Стелла.
– А как вы сюда попали? – спросила я.
– Наверняка, так же, как и вы... – был тихий ответ. – Мы гуляли по берегу озера, и не видели, что там был какой-то «провал»... Вот мы туда и провалились. А там ждал вот этот зверь... Что же будем делать?
– Уходить. – Постаралась ответить как можно спокойнее я.
– А остальных? Ты хочешь их всех оставить?!. – прошептала Стелла.
– Нет, конечно же, не хочу! Но как ты собираешься их отсюда забирать?..
Тут открылся какой-то странный, круглый лаз и вязкий, красный свет ослепил глаза. Голову сдавило клещами и смертельно захотелось спать...
– Держись! Только не спи! – крикнула Стелла. И я поняла, что это пошло на нас какое-то сильное действие, Видимо, этому жуткому существу мы нужны были совершенно безвольными, чтобы он свободно мог совершать какой то свой «ритуал».
– Ничего мы не сможем... – сама себе бурчала Стелла. – Ну, почему же не получается?..
И я подумала, что она абсолютно права. Мы обе были всего лишь детьми, которые, не подумав, пустились в очень опасные для жизни путешествия, и теперь не знали, как из этого всего выбраться.
Вдруг Стелла сняла наши наложенные «образы» и мы опять стали сами собой.
– Ой, а где же мама? Ты кто?... Что ты сделала с мамой?! – возмущённо прошипел мальчик. – А ну немедленно верни её обратно!
Мне очень понравился его бойцовский дух, имея в виду всю безнадёжность нашей ситуации.
– Дело в том, что здесь не было твоей мамы, – тихо прошептала Стелла. – Мы встретили твою маму там, откуда вы «провалились» сюда. Они за вас очень переживают, потому что не могут вас найти, вот мы и предложили помочь. Но, как видишь, мы оказались недостаточно осторожными, и вляпались в ту же самую жуткую ситуацию...
– А как давно вы здесь? Вы знаете, что с нами будут делать? – стараясь говорить уверенно, тихо спросила я.
– Мы недавно... Он всё время приносит новых людей, а иногда и маленьких зверей, и потом они пропадают, а он приносит новых.
Я с ужасом посмотрела на Стеллу:
– Это самый настоящий, реальный мир, и совершенно реальная опасность!.. Это уже не та невинная красота, которую мы создавали!.. Что будем делать?
– Уходить. – Опять упорно повторила малышка.
– Мы ведь можем попробовать, правда? Да и бабушка нас не оставит, если уж будет по-настоящему опасно. Видимо пока мы ещё можем выбраться сами, если она не приходит. Ты не беспокойся, она нас не бросит.
Мне бы её уверенность!.. Хотя обычно я была далеко не из пугливых, но эта ситуация заставляла меня очень сильно нервничать, так как здесь находились не только мы, но и те, за кем мы пришли в эту жуть. А как из данного кошмара выкарабкиваться – я, к сожалению, не знала.
– Здесь нету времени, но он приходит обычно через одинаковый промежуток, примерно как были сутки на земле. – Вдруг ответил на мои мысли мальчик.
– А сегодня уже был? – явно обрадованная, спросила Стелла.
Мальчонка кивнул.
– Ну что – пошли? – она внимательно смотрела на меня и я поняла, что она просит «надеть» на них мою «защиту».
Стелла первая высунула свою рыжую головку наружу...
– Никого! – обрадовалась она. – Ух ты, какой же это ужас!..
Я, конечно, не вытерпела и полезла за ней. Там и правда был настоящий «ночной кошмар»!.. Рядом с нашим странным «местом заточения», совершенно непонятным способом, повешенные «пучками» вниз головой, висели человеческие сущности... Они были подвешены за ноги, и создавали как бы перевёрнутый букет.
Мы подошли ближе – ни один из людей не показывал признаков жизни...
– Они же полностью «откачаны»! – ужаснулась Стелла. – У них не осталось даже капельки жизненной силы!.. Всё, давайте удирать!!!
Мы понеслись, что было сил, куда-то в сторону, абсолютно не зная – куда бежим, просто подальше бы от всей этой, замораживающей кровь, жути... Даже не думая о том, что можем снова вляпаться в такую же, или же ещё худшую, жуть...
Вдруг резко потемнело. Иссиня-чёрные тучи неслись по небу, будто гонимые сильным ветром, хотя никакого ветра пока что не было. В недрах чёрных облаков полыхали ослепительные молнии, красным заревом полыхали вершины гор... Иногда набухшие тучи распарывало о злые вершины и из них водопадом лилась тёмно-бурая вода. Вся эта страшная картинка напоминала, самый жуткий из жутких, ночной кошмар....
– Папочка, родимый, мне так страшно! – тоненько взвизгивал, позабыв свою былую воинственность, мальчонка.
Вдруг одна из туч «порвалась», и из неё полыхнул ослепительно яркий свет. А в этом свете, в сверкающем коконе, приближалась фигурка очень худого юноши, с острым, как лезвие ножа, лицом. Вокруг него всё сияло и светилось, от этого света чёрные тучи «плавились», превращаясь в грязные, чёрные лоскутки.
– Вот это да! – радостно закричала Стелла. – Как же у него это получается?!.
– Ты его знаешь? – несказанно удивилась я, но Стелла отрицательно покачала головкой.
Юноша опустился рядом с нами на землю и ласково улыбнувшись спросил:
– Почему вы здесь? Это не ваше место.
– Мы знаем, мы как раз пытались выбраться на верх! – уже во всю щебетала радостная Стелла. – А ты поможешь нам вернуться наверх?.. Нам обязательно надо быстрее вернуться домой! А то нас там бабушки ждут, и вот их тоже ждут, но другие.
Юноша тем временем почему-то очень внимательно и серьёзно рассматривал меня. У него был странный, насквозь пронизывающий взгляд, от которого мне стало почему-то неловко.
– Что ты здесь делаешь, девочка? – мягко спросил он. – Как ты сумела сюда попасть?
– Мы просто гуляли. – Честно ответила я. – И вот их искали. – Улыбнувшись «найдёнышам», показала на них рукой.
– Но ты ведь живая? – не мог успокоиться спаситель.
– Да, но я уже не раз здесь была. – Спокойно ответила я.
– Ой, только не здесь, а «наверху»! – смеясь, поправила меня моя подружка. – Сюда мы бы точно не возвращались, правда же?
– Да уж, я думаю, этого хватит надолго... Во всяком случае – мне... – меня аж передёрнуло от недавних воспоминаний.
– Вы должны отсюда уйти. – Опять мягко, но уже более настойчиво сказал юноша. – Сейчас.
От него протянулась сверкающая «дорожка» и убежала прямо в светящийся туннель. Нас буквально втянуло, даже не успев сделать ни шагу, и через какое-то мгновение мы оказались в том же прозрачном мире, в котором мы нашли нашу кругленькую Лию и её маму.
– Мама, мамочка, папа вернулся! И Велик тоже!.. – маленькая Лия кубарем выкатилась к нам навстречу, крепко прижимая к груди красного дракончика.. Её кругленькая мордашка сияла солнышком, а сама она, не в силах удержать своего бурного счастья, кинулась к папе и, повиснув у него на шее, пищала от восторга.
Мне было радостно за эту, нашедшую друг друга, семью, и чуточку грустно за всех моих, приходящих на земле за помощью, умерших «гостей», которые уже не могли друг друга так же радостно обнять, так как не принадлежали тем же мирам...
– Ой, папулечка, вот ты и нашёлся! А я думала, ты пропал! А ты взял и нашёлся! Вот хорошо-то как! – аж попискивала от счастья сияющая девчушка.
Вдруг на её счастливое личико налетела тучка, и оно сильно погрустнело... И уже совсем другим голосом малышка обратилась к Стелле:
– Милые девочки, спасибо вам за папу! И за братика, конечно же! А вы теперь уже уходить будете? А ещё когда-то вернётесь? Вот ваш дракончик, пожалуйста! Он был очень хороший, и он меня очень, очень полюбил... – казалось, что прямо сейчас бедная Лия разревётся навзрыд, так сильно ей хотелось подержать ещё хоть чуть-чуть этого милого диво-дракончика!.. А его вот-вот увезут и уже больше не будет...
– Хочешь, он ещё побудет у тебя? А когда мы вернёмся, ты его нам отдашь обратно? – сжалилась над малышкой Стелла.
Лия сначала ошалела от неожиданно свалившегося на неё счастья, а потом, не в состоянии ничего сказать, так сильно закивала головкой, что та чуть ли не грозилась отвалиться...
Простившись с радостным семейством, мы двинулись дальше.
Было несказанно приятно опять ощущать себя в безопасности, видеть тот же, заливающий всё вокруг радостный свет, и не бояться быть неожиданно схваченной каким-то страшно-кошмарным ужастиком...
– Хочешь ещё погулять? – совершенно свежим голоском спросила Стелла.
Соблазн, конечно же, был велик, но я уже настолько устала, что даже покажись мне сейчас самое что ни есть большое на земле чудо, я наверное не смогла бы этим по-настоящему насладиться...
– Ну ладно, в другой раз! – засмеялась Стелла. – Я тоже устала.

2.1. Окисление жирных кислот в клетках

Высшие жирные кислоты могут окисляться в клетках тремя путями:

а) путем a-окисления,

б) путем b-окисления,

в) путем w-окисления.

Процессы a- и w-окисления высших жирных кислот идут в микросомах клеток с участием ферментов монооксигеназ и играют в основном пластическую функцию -- в ходе этих процессов идет синтез гидроксикислот, кетокислот и кислот с нечетным числом атомов углерода, необходимых для клеток. Так, в ходе a-окисления жирная кислота может быть укорочена на один атом углерода, превращаясь таким образом в кислоту с нечетным числом атомов"C", в соответствии с приведенной схемой:

2.1.1. b-Окисление высших жирных кислот Основным способом окисления высших жирных кислот, по крайней мере в отношении общего количества окисляющихся в клетке соединений данного класса, является процесс b-окисления, открытый Кноопом еще в 1904 г. Этот процесс можно определить как процесс ступенчатого окислительного расщепления высших жирных кислот, в ходе которого идет последовательное отщепление двухуглеродных фрагментов в виде ацетил-КоА со стороны карбоксильной группы активированной молекулы высшей жирной кислоты.

Поступающие в клетку высшие жирные кислоты подвергаются активации с превращением их в ацил-КоА (R-CO-SKoA), причем активация жирных кислот происходит в цитозоле. Сам же процесс b-окисления жирных кислот идет в матриксе митохондрий. В то же время внутренняя мембрана митохондрий непроницаема для ацил-КоА, в связи с чем встает вопрос о механизме транспорта ацильных остатков из цитозоля в матрикс митохондрий.

Ацильные остатки переносятся через внутреннюю мембрану митохондрий с помощью специального переносчика, в качестве которого выступает карнитин (КН):

В цитозоле с помощью фермента внешней ацилКоА:карнитинацилтрансферазы (Е1 на ниже приведенной схеме) остаток высшей жирной кислоты переносится с коэнзима А на карнитин с образованием ацилкарнитина:

Ацилкарнитинин при участии специальной карнитин-ацилкарнитин-транслоказной системы проходит через мембрану внутрь митохондрии и в матриксе с помощью фермента внутренней ацил-КоА:карнитин-ацилтрансферазы (Е2) ацильный остаток передается с карнитина на внутримитохондриальный коэнзим А. В результате в матриксе митохондрий появляется активированный остаток жирной кислоты в виде ацил-КоА; высвобожденный карнитин с помощью той же самой транслоказы проходит через мембрану митохондрий в цитозоль, где может включаться в новый цикл переноса. Карнитин-ацилкарнитин-транслоказа, встроенная во внутреннюю мембрану митохондрий, осуществляет перенос молекулы ацилкарнитина внутрь митохондрии в обмен на молекулу карнитина, удаляемую из митохондрии.

Активированная жирная кислота в матриксе митохондрий подвергается ступенчатому циклическому окислению по схеме:

В результате одного цикла b-окисления радикал жирной кислоты укорачивается на 2 атома углерода, а отщепившийся фрагмент выделяется в виде ацетил-КоА. Суммарное уравнение цикла:

В ходе одного цикла b-окисления, например,при превращении стеароил-КоА в пальмитоил-КоА с образованием ацетил-КоА, высвобождается 91 ккал/моль свободной энергии, однако основная часть этой энергии накапливается в виде энергии восстановленных коферментов, потери же энергии в виде теплоты составляют лишь около 8 ккал/моль.

Образовавшийся ацетил-КоА может поступать в цикл Кребса, где он будет окисляться до конечных продуктов или же может использоваться для других нужд клетки, например, для синтеза холестерола. Укороченный на 2 атома углерода ацил-КоА вступает в новый цикл b-окисления. В результате нескольких последовательных циклов окисления вся углеродная цепь активированной жирной кислоты расщепляется до "n" молекул ацетил-КоА, причем значение "n" определяется числом атомов углерода в исходной жирной кислоте.

Энергетический эффект одного цикла b-окисления можно оценить исходя из того, в ходе цикла образуются 1 молекула ФАДН2 и 1 молекула НАДН+Н. При их поступлении в цепь дыхательных ферментов будет синтезироваться 5 молекул АТФ (2 + 3). Если образовавшийся ацетил-КоА будет окислен в цикле Кребса, то клетка получит еще 12 молекул АТФ.

Для стеариновой кислоты суммарное уравнение ее b-окисления имеет вид:

Расчеты показывают, что при окислении стеариновой кислоты в клетке будет синтезироваться 148 молекул АТФ. При расчете энергетического баланса окисления из этого количества нужно исключить 2 макроэргических эквивалента, затрачиваемых при активации жирной кислоты (в ходе активации АТФ расщепляется до АМФ и 2 Н3РО4). Таким образом, при окислении стеариновой кислоты клетка получит 146 молекул АТФ.

Для сравнения: при окислении 3 молекул глюкозы, содержащих также 18 атомов углерода, клетка получает только 114 молекул АТФ, т.е. высшие жирные кислоты являются более выгодным энергетическим топливом для клеток по сравнению с моносахаридами. По-видимому, это обстоятельство является одной из главных причин того, что энергетические резервы организма представлены преимущественно в виде триацилглицеринов, а не гликогена.

Общее количество свободной энергии, выделяющееся при окислении 1 моля стеариновой кислоты составляет около 2632 ккал, из них накапливается в виде энергии макроэргических связей синтезированных молекул АТФ около 1100 ккал.Таким образом, аккумулируется примерно 40% всей выделяющейся свободной энергии.

Скорость b-окисления высших жирных кислот определяется, во-первых, концентрацией жирных кислот в клетке и, во-вторых, активностью внешней ацил-КоА:карнитин-ацилтрансферазы. Активность фермента угнетается малонил-КоА. На смысле последнего регуляторного механизма мы остановимся несколько позднее, когда будем обсуждать координацию процессов окисления и синтеза жирных кислот в клетке.


Оранжевыми миндалинами и аккумуляцией эфиров ХС в других ретикулоэндотелиальных тканях. Патология связана с ускоренным катаболизмом апо А-I . Переваривание и всасывание липидов. Желчь. Значение. На заре формирования современного учения о внешнесекреторной функции печени, когда естествоиспытатели располагали лишь первыми...

Динамика химических превращений, происходящих в клетках, изучается биологической химией. Задачей физиологии является определение общих затрат веществ и энергии организмом и того, как они должны восполняться с помощью полноценного питания. Энергетический обмен служит показателем общего состояния и физиологической активности организма. Единица измерения энергии, обычно применяемая в биологии и...

Кислоты, которые относят к незаменимым жирным кислотам (линолевая, линоленовая, арахидоновая), которые не синтезируются у человека и животных. С жирами в организм поступает комплекс биологически активных веществ: фосфолипиды, стерины. Триацилглицеролы – основная их функция – запасание липидов. Они находятся в цитозоле в виде мелкодисперсных эмульгированных маслянистых капелек. Сложные жиры: ...

... α,d – глюкоза глюкозо – 6 – фосфат С образованием глюкозо – 6 – фосфата пути гликолиза и гликогенолиза совпадают. Глюкозо – 6 – фосфат занимает ключевое место в обмене углеводов. Он вступает в следующие метаболические пути: глюкозо – 6 – фосфат глюкоза + Н3РО4 фруктозо – 6 – фосфат пентозный путь распада (поступает в кровь и др. ...

Триацилглицерины поэтапно расщепляется тканевыми липазами.

Ключевым ферментом липолиза является гормональнозависимая ТАГ-липаза. Образующиеся на этом этапе распада жиров глицерин и жирные кислоты окисляются в тканях с образованием энергии.

Различают несколько вариантов окисления жирных кислот: α - окисление, β - окисление, ω - окисление. Основным вариантом окисления жирных кислот является β - окисление. Оно наиболее активно протекает в жировой ткани, печени, почках и сердечной мышце.

Β - окисление заключается в постепенном отщеплении от жирной кислоты двух углеродных атомов в виде ацетил-КоА с освобождением энергии. Запас жирных кислот сосредоточен в цитозоле, где протекает активация жирных кислот с образованием ацил-КоА

Энергетическая эффективность бета - окисления жирных кислот складывается из энергии окисления ацетил-КоА в цикле Кребса и энергии, освобождающейся в самом бета-цикле. Энергия окисления жирной кислоты тем выше, чем длиннее её углеродная цепь. Количество молекул ацетил-КоА из данной жирной кислоты и количество образующихся из них молекул АТФ определяется по формулам:

n=N/2, где n-количество молекул ацетил-КоА, N- число атомов углерода в жирной кислоте.

Количество молекул АТФ за счёт окисления молекул ацетил-КоА = (N/2)*12

Число β - циклов окисления на один меньше, чем количество образующихся молекул ацетил-КоА, поскольку в последнем цикле масляная кислота за один цикл переходит в две молекулы ацетил-КоА, и рассчитывается по формуле

Количество β - циклов = (N/2)-1

Количество молекул АТФ в β - цикле рассчитывается, исходя из последующего окисления образовавшихся в нём НАДН 2 (3 АТФ) и ФАДН 2 (2 АТФ) по формуле

Количество молекул АТФ, образующихся в бета-циклах = ((N/2)-1)*5

2 макроэргические связи АТФ расходуются на активацию жирной кислоты

Суммарная формула для подсчёта выхода АТФ при окислении насыщенной жирной кислоты имеет вид: 17(N/2)-7.

При окислении жирных кислот с нечётным числом углеродных атомов образуется сукцинил-КоА, который вступает в цикл Кребса.

Окисление ненасыщенных жирных кислот на начальных стадиях представляет обычное бета - окисление до места двойной связи. Если эта двойная связь находится в бета - положении, то продолжается окисление жирной кислоты со второго этапа (минуя стадию восстановления ФАД→ ФАДН 2). Если двойная связь находится не бета - положении, то ферментами еноилтрансферазами связь перемещается в бета - положение. Таким образом, при окислении ненасыщенных жирных кислот образуется меньше энергии по формуле (теряется образование ФАДН2):


7(N/2)-7-2m , где m-число двойных связей.

Похожие статьи

  • Онлайн тесты гиа по русскому языку Демо версия огэ фипи

    Модуль "Алгебра" 1 . Найдите значение выражения 2. В таблице приведены нормативы по бегу на 30 метров для учащихся 9 класса. Какую отметку получит девочка, пробежавшая эту дистанцию за 5,62 секунды? 1) отметка «5» 2) отметка «4» 3)...

  • Определение характера среды раствора кислот и щелочей с помощью индикаторов

    Тема урока: Творческие задания в вариантах ГИА Место урока: обобщающий урок в 9 классе (при подготовке к ГИА по химии). Длительность урока: (60 мин.). Содержание урока: Урок структурно разбит на 3 части, соответствующим вопросам в...

  • Пансион искусных фавориток

    Эта книга посвящена предыстории установления гитлеровской диктатуры в Германии, которое произошло 30 января 1933 г. и имело тяжелейшие последствия для народов Европы и всего мира. Различные аспекты нацистского господства, катастрофические...

  • Зарубежная литература сокращено

    Рассказ «Маугли» Киплинга входит в знаменитый сборник писателя «Книга джунглей», в котором главными героями выступают животные. Это удивительная история о мальчике, который был воспитан стаей волков и жил среди диких обитателей джунглей....

  • Почему присяжные оправдали террористку веру засулич Вера засулич совершила покушение на

    Засулич Вера Ивановна является весьма неоднозначной исторической личностью. Те, кто особенно не интересовался подробностями биографии этой женщины, скорее всего, вспомнят ее в образе героини, которая стреляла в бесчинствующего чиновника...

  • Примеры интеллигентных людей

    Держи, тут явно больше 60-80 слов.Интеллигентность - высокий уровень развития интеллекта, образованности, высокой культуры поведения. Интеллигентность заключена не только (и даже - не столько!) в знаниях, но и в способности к пониманию...